8,416
Views
42
CrossRef citations to date
0
Altmetric
Research Article

Preparation and use of nanogels as carriers of drugs

, & ORCID Icon
Pages 1594-1602 | Received 20 May 2021, Accepted 05 Jul 2021, Published online: 26 Jul 2021

References

  • Ahmed S, Alhareth K, Mignet N. (2020). Advancement in nanogel formulations provides controlled drug release. Int J Pharm 584:119435.
  • Alarcón C, Pennadam S, Alexander C. (2005). Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–85.
  • Ashrafizadeh M, Tam K, Javadi A, et al. (2019). Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems. J Colloid Interface Sci 556:313–23.
  • Averick S, Magenau A, Simakova A, et al. (2011). Covalently incorporated protein-nanogels using AGET ATRP in an inverse miniemulsion. Polym Chem 2:1476–8.
  • Bae K, Mok H, Park T. (2008). Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials 29:3376–83.
  • Bagheri F, Darakhshan S, Mazloomi S, et al. (2021). Dual loading of Nigella sativa oil-atorvastatin in chitosan-carboxymethyl cellulose nanogel as a transdermal delivery system. Drug Dev Ind Pharm 47:569–78.
  • Bawa P, Pillay V, Choonara Y, et al. (2009). Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 4:022001.
  • Boddohi S, Moore N, Johnson P, et al. (2009). Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10:1402–9.
  • Brandl F, Sommer F, Goepferich A. (2007). Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28:134–46.
  • Bütün V, Wang X, Banez M, et al. (2000). Synthesis of shell cross-linked micelles at high solids in aqueous media. Macromolecules 33:1–3.
  • Cai T, Hu Z, Ponder B, et al. (2003). Synthesis and study of and controlled release from nanoparticles and their networks based on functionalized hydroxypropylcellulose. Macromolecules 36:6559–64.
  • Chacko R, Ventura J, Zhuang J, et al. (2012). Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64:836–51.
  • Chen H, Gu Y, Hu Y. (2007). Synthesis and characterization of pH and temperature-sensitive nano-hydrogels. J China Med Univ 38:25–9.
  • Chen W, Zou Y, Zhong Z, et al. (2017). Cyclo (RGD)-decorated reduction-responsive nanogels mediate targeted chemotherapy of integrin overexpressing human glioblastoma in vivo. Small 13:1601997.
  • Chen Y, Ballard N, Bon S. (2013). Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly(N-isopropylacrylamide) nanogel dispersions. Chem Commun 49:1524–6.
  • Cheng R, Feng F, Meng F, et al. (2011). Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12.
  • Dai H, Chen Q, Qin H, et al. (2006). A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 39:6584–9.
  • Das D, Alhusaini Q, Kaur K, et al. (2021). Enzyme-responsive biopolymeric nanogel fibers by extrusion: engineering of high-surface-area hydrogels and application in bacterial enzyme detection. ACS Appl Mater Interfaces 13:12928–40.
  • Deen G, Gan L. (2008). Study of microemulsion polymerization conditions on the preparation of “stimuli” responsive copolymer nanogels of N‐acryloyl‐N′‐methyl piperazine and methyl methacrylate. J Dispers Sci Technol 29:431–5.
  • Dou H, Jiang M. (2007). Fabrication, characterization and drug loading of pH‐dependent multi‐morpho‐logical nanoparticles based on cellulose. Polym Int 56:1206–12.
  • Dou H, Yang W, Tao K, et al. (2010). Thermal sensitive microgels with stable and reversible photoluminescence based on covalently bonded quantum dots. Langmuir 26:5022–7.
  • Duracher D, Elaissari A, Pichot C. (1999). Preparation of poly (N‐isopropylmethacrylamide) latexes kinetic studies and characterization. J Polym Sci 37:1823–37.
  • Eckmann D, Composto R, Tsourkas A, et al. (2014). Nanogel carrier design for targeted drug delivery. J Mater Chem B 2:8085–97.
  • Ethirajan A, Schoeller K, Musyanovych A, et al. (2008). Synthesis and optimization of gelatin nanoparticles using the miniemulsion process. Biomacromolecules 9:2383–9.
  • Euliss L, Dupont J, Gratton S, et al. (2006). Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35:1095–104.
  • Ganachaud F, Elaïssari A, Pichot C, et al. (1997). Adsorption of single-stranded DNA fragments onto cationic aminated latex particles. Langmuir 13:701–7.
  • Gratton S, Ropp P, Pohlhaus P, et al. (2008). The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–8.
  • Grimaudo M, Concheiro A, Alvarez-Lorenzo C. (2019). Nanogels for regenerative medicine. J Control Release 313:148–60.
  • He J, Tong X, Zhao Y. (2009). Photoresponsive nanogels based on photocontrollable cross-links. Macromolecules 42:4845–52.
  • Hendrickson G, Smith M, South A, et al. (2010). Design of multiresponsive hydrogel particles and assemblies. Adv Funct Mater 20:1697–712.
  • Hong J, Vreeland W, Lacerda S, et al. (2008). Liposome-Templated Supramolecular Assembly of Responsive Alginate Nanogels. Langmuir 24:4092–6.
  • Ito Y. (1999). Photolithographic synthesis of intelligent microgels. J Intell Mater Syst Struct 10:541–7.
  • Jiang Y, Chen J, Deng C, et al. (2014). Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–85.
  • Jung K, Lee D, Park J. (2009). Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 34:1261–82.
  • Jung K, Tang C, Gao H, et al. (2006). Inverse miniemulsion ATRP: a new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. J Am Chem Soc 128:5578–84.
  • Kabanov A, Vinogradov S. (2009). Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 48:5418–29.
  • Lang X, Wang T, Sun M, et al. (2020). Advances and applications of chitosan-based nanomaterials as oral delivery carriers: a review. Int J Biol Macromol 154:433–45.
  • Lee E, Kim D, Youn Y, et al. (2008). A virus-mimetic nanogel vehicle. Angew Chem Int Ed Engl 47:2418–21.
  • Li D, van Nostrum C, Mastrobattista E, et al. (2017). Nanogels for intracellular delivery of biotherapeutics. J Control Release 259:16–28.
  • Li W, Wang W, Li R, et al. (2002). Synthesis and bio-medical application of the intelligent nanogels. Nucl Tech 25:624–30.
  • Liu R, An Y, Jia W, et al. (2020). Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. J Control Release 321:589–601.
  • Liu R, Hu C, Yang Y, et al. (2019). Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B 9:410–20.
  • Liu B, Thayumanavan S. (2017). Substituent effects on the pH sensitivity of acetals and ketals and their correlation with encapsulation stability in polymeric nanogels. J Am Chem Soc 139:2306–17.
  • Lu Y, Jia D, Ma X, et al. (2021). Reduction-responsive chemo-capsule-based prodrug nanogel for synergistic treatment of tumor chemotherapy. ACS Appl Mater Interfaces 13:8940–51.
  • Maciel D, Figueira P, Xiao S, et al. (2013). Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromolecules 14:3140–6.
  • Marty J, Oppenheim RC, Speiser P. (1978). Nanoparticles – a new colloidal drug delivery system. Pharm Acta Helv 53:17–23.
  • Meng F, Hennink W, Zhong Z. (2009). Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–98.
  • Mitra S, Gaur U, Ghosh P, et al. (2001). Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74:317–23.
  • Morimoto N, Nomura S, Miyazawa N, et al. (2006). Nanogel engineered designs for polymeric drug delivery. Polym Matrices Drug Particle Eng 924:88–101.
  • Nai J, Rajput R, Narkhede J, et al. (2021). Synthesis and evaluation of UV cross-linked poly (acrylamide) loaded thymol nanogel for antifungal application in oral candidiasis. J Polym Res 28:15.
  • Napier M, Desimone J. (2007). Nanoparticle drug delivery platform. Polymer Revs 47:321–7.
  • Nicolas S, Jutta R. (2010). Synthesis of nanogels/microgels by conventional and controlled radical crosslinking. Polym Chem 1:965–77.
  • Nosrati H, Abbasi R, Charmi J, et al. (2018). Folic acid conjugated bovine serum albumin: an efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. Int J Biol Macromol 117:1125–32.
  • Nukolova N, Oberoi H, Cohen S, et al. (2011). Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials 32:5417–26.
  • Oh J, Siegwart D, Matyjaszewski K. (2007). Synthesis and biodegradation of nanogels as delivery carriers for carbohydrate drugs. Biomacromolecules 8:3326–31.
  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. (2008). The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–77.
  • Oudshoorn M, Penterman R, Rissmann R, et al. (2007). Preparation and characterization of structured hydrogel microparticles based on cross-linked hyperbranched polyglycerol. Langmuir 23:11819–25.
  • Oudshoorn M, Penterman R, Rissmann R, et al. (2008). Fabrication of uniformly shaped hydrogel microparticles based on crosslinked hyperbranched polyglycerol by micromolding and photolithographic methods. J Control Release 132:e31–32.
  • Pan Y, Chen Y, Wang D, et al. (2012). Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials 33:6570–9.
  • Peng S, Ouyang B, Xin Y, et al. (2021). Hypoxia-degradable and long-circulating zwitterionic phosphorylcholine-based nanogel for enhanced tumor drug delivery. Acta Pharm Sin B 11:560–71.
  • Peppas N, Hilt J, Khademhosseini A, et al. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–60.
  • Peres L, dos Anjos R, Tappertzhofen L, et al. (2018). pH-responsive physically and chemically cross-linked glutamic-acid-based hydrogels and nanogels. Eur Polym J 101:341–9.
  • Raemdonck K, Demeester J, De S. (2009). Advanced nanogel engineering for drug delivery. Soft Matter 5:707–15.
  • Ribovski L, Jong E, Mergel O, et al. (2021). Low nanogel stiffness favors nanogel transcytosis across an in vitro blood-brain barrier. Nanomedicine 34:102377.
  • Rolland J, Maynor B, Euliss L, et al. (2005). Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127:10096–100.
  • Sahiner N, Godbey W, McPherson G, et al. (2006). Microgel, nanogel and hydrogel-hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid Polym Sci 284:1121–9.
  • Sahu P, Kashaw S, Jain S, et al. (2017). Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: in vitro and ex vivo studies. J Control Release 253:122–36.
  • Sawada S, Akiyoshi K. (2010). Nano-encapsulation of lipase by self-assembled nanogels: induction of high enzyme activity and thermal stabilization . Macromol Biosci 10:353–8.
  • Seiffert S, Weitz D. (2010). Controlled fabrication of polymer microgels by polymer-analogous gelation in droplet microfluidics. Soft Matter 6:3184–90.
  • Shen X, Zhang L, Jiang X, et al. (2007). Reversible surface switching of nanogel triggered by external stimuli. Angew Chem Int Ed Engl 46:7104–7.
  • Soni K, Desale S, Bronich T. (2016). Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–26.
  • Thorne J, Vine G, Snowden M. (2011). Microgel applications and commercial considerations. Colloid Polym Sci 289:625–46.
  • Tong X, Zhao F, Ren Y, et al. (2018). Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. J Biomed Mater Res A 106:3292–302.
  • Torchilin V. (2001). Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–72.
  • Torchilin V. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–27.
  • Vashist A, Kaushik A, Vashist A, et al. (2018). Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today 23:1436–43.
  • Verma IM, Somia N. (1997). Gene therapy – promises, problems and prospects. Nature 389:239–42.
  • Vinogradov S. (2007). Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv 4:5–17.
  • Vinogradov S. (2010). Nanogels in the race for drug delivery. Nanomedicine 5:165–8.
  • Vinogradov S, Bronich T, Kabanov A. (2002). Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–47.
  • Vladisavljevic G, Williams A. (2005). Recent developments in manufacturing emulsions and particulate products using membranes. Adv Colloid Interface Sci 113:1–20.
  • Wang H, Chen Q, Zhou S. (2018). Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 47:4198–232.
  • Wang Q, Gao L, Zhu X, et al. (2019). Co-delivery of glycyrrhizin and doxorubicin by alginate nanogel particles attenuates the activation of macrophage and enhances the therapeutic efficacy for hepatocellular carcinoma. Theranostics 9:6239–55.
  • Wang Y, Gu Y, Zhou Z, et al. (2006). Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf B Biointerfaces 50:126–35.
  • Wang Y, Luo Y, Zhao Q, et al. (2016). An enzyme-responsive nanogel carrier based on PAMAM dendrimers for drug delivery. ACS Appl Mater Interfaces 8:19899–906.
  • Wang Y, Zheng J, Tian Y, Yang W. (2015). Acid degradable poly(vinylcaprolactam)-based nanogels with ketal linkages for drug delivery . J Mater Chem B 3:5824–32.
  • Wu Q, Tian P. (2008). Adsorption of Cu2+ ions with poly (N-1soProPylacrylamide-co-Methaerylie Acid) miero/nanopartieles. J Appl Polym Sci 109:3470–6.
  • Xia X, Tang S, Lu X, et al. (2003). Formation and volume phase transition of hydroxypropyl cellulose microgels in salt solution. Macromolecules 36:3695–8.
  • Xing Z, Wang C, Yan J, et al. (2010). PH/temperature dual stimuli-responsive microcapsules with interpenetrating polymer network structure. Colloid Polym Sci 288:1723–9.
  • Xing Z, Wang C, Yan J, et al. (2011). Dual stimuli responsive hollow nanogels with IPN structure for temperature controlling drug loading and pH triggering drug release. Soft Matter 7:7992–7.
  • Yeh J, Ling Y, Karp J, et al. (2006). Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27:5391–8.
  • Zha L, Banik B, Alexis F. (2011). Stimulus responsive nanogels for drug delivery. Soft Matter 7:5908–16.
  • Zha L, Zhang Y, Yang W, et al. (2002). Monodisperse temperature-sensitive microcontainers. Adv Mater 14:1090–2.
  • Zhang H, Tumarkin E, Sullan RMA, et al. (2007). Exploring microfluidic routes to microgels of biological polymers. Macromol Rapid Commun 28:527–38.
  • Zhang H, Zhai Y, Wang J, et al. (2016). New progress and prospects: the application of nanogel in drug delivery. Mater Sci Eng C Mater Biol Appl 60:560–8.
  • Zhang W, Tung CH. (2018). Redox-responsive cisplatin nanogels for anticancer drug delivery. Chem Commun 54:8367–70.
  • Zhang X, Malhotra S, Molina M, et al. (2015). Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 44:1948–73.
  • Zhang Y, Garret D, Yan J, et al. (2021). Amphiphilic thiol polymer nanogel removes environmentally relevant mercury species from both produced water and hydrocarbons. Environ Sci Technol 55:1231–41.
  • Zhang Y, Zha L, Fu S. (2004). Kinetic analysis of poly (N-isopropylacrylamide-co-dimethylaminoethyl methacrylate) microgel latex formation. J Appl Polym Sci 92:839–46.