1,451
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of XlogP and hansen solubility parameters on the prediction of small molecule modified docetaxel, doxorubicin and irinotecan conjugates forming stable nanoparticles

, , , , , , & show all
Pages 1603-1615 | Received 25 May 2021, Accepted 12 Jul 2021, Published online: 28 Jul 2021

References

  • Alfayez M, Kantarjian H, Kadia T, et al. (2020). CPX-351 (vyxeos) in AML. Leuk Lymphoma 61:288–97.
  • Autio KA, Dreicer R, Anderson J, et al. (2018). Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: a phase 2 clinical trial. JAMA Oncol 4:1344–51.
  • Bhat M, Jatyan R, Mittal A, et al. (2021). Opportunities and challenges of fatty acid conjugated therapeutics. Chem Phys Lipids 236:105053.
  • Cheng T, Zhao Y, Li X, et al. (2007). Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J Chem Inf Model 47:2140–8.
  • Choi JS, Park JS. (2017). Development of docetaxel nanocrystals surface modified with transferrin for tumor targeting. Drug Des Devel Ther 11:17–26.
  • Clark AJ, Wiley DT, Zuckerman JE, et al. (2016). CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc Natl Acad Sci USA 113:3850–4.
  • Fujita K-i, Kubota Y, Ishida H, Sasaki Y. (2015). Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol 21:12234–48.
  • Fujiwara Y, Mukai H, Saeki T, et al. (2019). A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br J Cancer 120:475–80.
  • Guidolin K, Zheng G. (2019). Nanomedicines lost in translation. ACS Nano 13:13620–6.
  • Hansen CM. Hansen solubility parameters: a user’s handbook. (2nd edn.). 2007.
  • He D, Zhang W, Deng H, et al. (2016). Self-assembling nanowires of an amphiphilic camptothecin prodrug derived from homologous derivative conjugation. Chem Commun 52:14145–8.
  • Huang L, Zhao S, Fang F, et al. (2021). Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 268:120557.
  • Huang P, Hu M, Zhou L, et al. (2015). Self-delivery nanoparticles from an amphiphilic covalent drug couple of irinotecan and bendamustine for cancer combination chemotherapy. RSC Adv 5:86254–64.
  • Huang P, Wang D, Su Y, et al. (2014). Combination of small molecule prodrug and nanodrug delivery: amphiphilic drug-drug conjugate for cancer therapy. J Am Chem Soc 136:11748–56.
  • Karaosmanoglu S, Zhou M, Shi B, et al. (2021). Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 329:805–32.
  • Li Y, Chen Y, Huang Y, et al. (2019). Kinetic stability-driven cytotoxicity of small-molecule prodrug nanoassemblies. J Mater Chem B 7:5563–72.
  • Luo C, Sun J, Sun B, et al. (2016). Facile fabrication of tumor redox-sensitive nanoassemblies of small-molecule oleate prodrug as potent chemotherapeutic nanomedicine. Small 12:6353–62.
  • Maksimenko A, Dosio F, Mougin J, et al. (2014). A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc Natl Acad Sci USA 111:E217–E226.
  • Mitra AK, Agrahari V, Mandal A, et al. (2015). Novel delivery approaches for cancer therapeutics. J Control Release 219:248–68.
  • Pattni BS, Chupin VV, Torchilin VP. (2015). New developments in liposomal drug delivery. Chem Rev 115:10938–66.
  • Peer D, Karp JM, Hong S, et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–60.
  • Pellico J, Gawne PJ, De Rosales TMR. (2021). Radiolabelling of nanomaterials for medical imaging and therapy. J. Chem Soc Rev 50:3355–423.
  • Piktel E, Niemirowicz K, Wątek M, et al. (2016). Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnology 14:39.
  • Ren G, Jiang M, Xue P, et al. (2016). A unique highly hydrophobic anticancer prodrug self-assembled nanomedicine for cancer therapy. Nanomedicine 12:2273–82.
  • Shen S, Wu Y, Liu Y, et al. (2017). High drug-loading nanomedicines: Progress, current status, and prospects. Int J Nanomedicine 12:4085–109.
  • Shi J, Kantoff PW, Wooster R, et al. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37.
  • Sreekanth V, Bajaj A. (2019). Recent advances in engineering of lipid drug conjugates for cancer therapy. ACS Biomater Sci Eng 5:4148–66.
  • Stathopoulos GP, Antoniou D, Dimitroulis J, et al. (2010). Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: a randomized phase III multicenter trial. Ann Oncol 21:2227–32.
  • Wang H, Xie H, Wang J, et al. (2015). Self-assembling prodrugs by precise programming of molecular structures that contribute distinct stability, pharmacokinetics, and antitumor efficacy. Adv Funct Mater 25:4956–65.
  • Wang Y, Liu D, Zheng Q, et al. (2014). Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. Nano Lett 14:5577–83.
  • Zhang S, Li ZT, Liu M, et al. (2019). Anti-tumour activity of low molecular weight heparin doxorubicin nanoparticles for histone H1 high-expressive prostate cancer PC-3M cells. J Control Release 295:102–17.
  • Zheng Y, Ying X, Su Y, et al. (2021). Kinetically-stable small-molecule prodrug nanoassemblies for cancer chemotherapy. Int J Pharm 597:120369.
  • Zhong T, Hao Y-L, Yao X, et al. (2018). Effect of XlogP and hansen solubility parameters on small molecule modified paclitaxel anticancer drug conjugates self-assembled into nanoparticles. Bioconjug Chem 29:437–44.
  • Zhong T, Yao X, Zhang S, et al. (2016). A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic. Scientific Reports 6:36614.