1,348
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Determining the effect of ocular chemical injuries on topical drug delivery

, , , &
Pages 2044-2050 | Received 06 Jul 2021, Accepted 06 Sep 2021, Published online: 01 Oct 2021

References

  • Baradaran-Rafii A, Eslani M, Haq Z, et al. (2017). Current and upcoming therapies for ocular surface chemical injuries. Ocul Surf 15:48–64.
  • Begum G, Leigh T, Courtie E, et al. (2020). Rapid assessment of ocular drug delivery in a novel ex vivo corneal model. Sci Rep 10:11754.
  • Blanch R, Raux S, Woodcock M, et al. (2018). Ocular trauma. In: Denniston AK, Murray PI, eds. Oxford handbook of ophthalmology. 4th ed. Oxford (UK): Oxford University Press, 114–23.
  • Brodovsky SC, McCarty CA, Snibson G, et al. (2000). Management of alkali burns: an 11-year retrospective review. Ophthalmology 107:1829–35.
  • Chen Q, Zielinski D, Chen J, et al. (2008). A validated, stability-indicating HPLC method for the determination of dexamethasone related substances on dexamethasone-coated drug-eluting stents. J Pharm Biomed Anal 48:732–8.
  • Davis AR, Ali QK, Aclimandos WA, et al. (1997). Topical steroid use in the treatment of ocular alkali burns. Br J Ophthalmol 81:732–4.
  • Fish R, Davidson RS. (2010). Management of ocular thermal and chemical injuries, including amniotic membrane therapy. Curr Opin Ophthalmol 21:317–21.
  • Fukuda M, Sasaki H. (2016). In vivo measurement of human corneal impedance value. Cornea 35:1305–7.
  • Gérard M, Louis V, Merle H, et al. (1999). Experimental study about intra-ocular penetration of ammonia. J Fr Ophtalmol 22:1047–53.
  • Ghosh S, Salvador-Culla B, Kotagiri A, et al. (2019). Acute chemical eye injury and limbal stem cell deficiency—a prospective study in the United Kingdom. Cornea 38:8–12.
  • Guimera A, Gabriel G, Plata-Cordero M, et al. (2012). A non-invasive method for an in vivo assessment of corneal epithelium permeability through tetrapolar impedance measurements. Biosens Bioelectron 31:55–61.
  • Heng LZ, Hamilton RD. (2018). Ocular emergencies. Medicine 46:754–9.
  • Kaler G, Truong DM, Khandelwal A, et al. (2007). Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J Biol Chem 282:23841–53.
  • Kaluzhny Y, Kinuthia MW, Truong T, et al. (2018). New human organotypic corneal tissue model for ophthalmic drug delivery studies. Invest Ophthalmol Vis Sci 59:2880–98.
  • Kuckelkorn R, Schrage N, Keller G, Redbrake C. (2002). Emergency treatment of chemical and thermal eye burns. Acta Ophthalmol Scand 80:4–10.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25.
  • Lombardo F, Shalaeva MY, Tupper KA, et al. (2000). ElogP.OCT: a tool for lipophilicity determination in drug discovery. J Med Chem 43:2922–8.
  • Nassr MA, Morris CL, Netland PA, Karcioglu ZA. (2009). Intraocular pressure change in orbital disease. Surv Ophthalmol 54:519–44.
  • Paschalis EI, Zhou C, Lei F, et al. (2017). Mechanisms of retinal damage after ocular alkali burns. Am J Pathol 187:1327–42.
  • Pfister RR. (1983). Chemical injuries of the eye. Ophthalmology 90:1246–53.
  • Ramponi DR. (2017). Chemical burns of the eye. Adv Emerg Nurs J 39:193–8.
  • Sharma N, Kaur M, Agarwal T, et al. (2018). Treatment of acute ocular chemical burns. Surv Ophthalmol 63:214–35.
  • Singh P, Tyagi M, Kumar Y, et al. (2013). Ocular chemical injuries and their management. Oman J Ophthalmol 6:83–6.
  • Uematsu M, Mohamed YH, Onizuka N, et al. (2016). Less invasive corneal transepithelial electrical resistance measurement method. Ocul Surf 14:37–42.
  • Wagoner MD. (1997). Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol 41:275–313.
  • White ML, Chodosh J, Jang J, Dohlman C. (2015). Incidence of Stevens-Johnson syndrome and chemical burns to the eye. Cornea 34:1527–33.