2,793
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Endostatin in fibrosis and as a potential candidate of anti-fibrotic therapy

, , , , , & show all
Pages 2051-2061 | Received 13 Jul 2021, Accepted 13 Sep 2021, Published online: 01 Oct 2021

References

  • Arung W, Meurisse M, Detry O. (2011). Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol 17:4545–53.
  • Barrientos S, Brem H, Stojadinovic O, et al. (2014). Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 22:569–78.
  • Bhattacharyya S, Chen SJ, Wu M, et al. (2008). Smad-independent transforming growth factor-beta regulation of early growth response-1 and sustained expression in fibrosis: implications for scleroderma. Am J Pathol 173:1085–99.
  • Bhattacharyya S, Wu M, Fang F, et al. (2011). Early growth response transcription factors: key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol 30:235–42.
  • Bian EB, Huang C, Wang H, et al. (2014). Repression of smad7 mediated by dnmt1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett 224:175–85.
  • Capobianco A, Cottone L, Monno A, et al. (2017). The peritoneum: healing, immunity, and diseases. J Pathol 243:137–47.
  • Chegini N. (2008). Tgf-beta system: the principal profibrotic mediator of peritoneal adhesion formation. Semin Reprod Med 26:298–312.
  • Chen J, Liu D-G, Yang G, et al. (2014). Endostar, a novel human recombinant endostatin, attenuates liver fibrosis in CCl 4-induced mice. Exp Biol Med (Maywood) 239:998–1006.
  • Chen L, Yang T, Lu DW, et al. (2018). Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 101:670–81.
  • Chen N, Gao RF, Yuan FL, et al. (2016). Recombinant human endostatin suppresses mouse osteoclast formation by inhibiting the NF-κB and MAPKs Signaling Pathways . Front Pharmacol 7:145.
  • Chen W, Hu S. (2011). Suitable carriers for encapsulation and distribution of endostar: Comparison of endostar-loaded particulate carriers. Int J Nanomedicine 6:1535–41.
  • De Donatis A, Comito G, Buricchi F, et al. (2008). Proliferation versus migration in platelet-derived growth factor signaling: The key role of endocytosis. J Biol Chem 283:19948–56.
  • Dennler S, Itoh S, Vivien D, et al. (1998). Direct binding of smad3 and smad4 to critical tgf beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. Embo J 17:3091–100.
  • Dikic I, Elazar Z. (2018). Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–64.
  • Dong J, Ma Q. (2019). In vivo activation and pro-fibrotic function of NF-κB in Fibroblastic Cells During Pulmonary Inflammation and Fibrosis Induced by Carbon Nanotubes . Front Pharmacol 10:1140.
  • Eriksson K, Magnusson P, Dixelius J, et al. (2003). Angiostatin and endostatin inhibit endothelial cell migration in response to fgf and vegf without interfering with specific intracellular signal transduction pathways. FEBS Lett 536:19–24.
  • Folkman J. (2006). Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp Cell Res 312:594–607.
  • Fu Y, Tang H, Huang Y, et al. (2009). Unraveling the mysteries of endostatin. IUBMB Life 61:613–26.
  • Fukushima M, Nakamuta M, Kohjima M, et al. (2005). Fasudil hydrochloride hydrate, a rho-kinase (rock) inhibitor, suppresses collagen production and enhances collagenase activity in hepatic stellate cells. Liver Int 25:829–38.
  • Gong YF, Zhang XM, Liu F, et al. (2016). Inhibitory effect of recombinant human endostatin on the proliferation of hypertrophic scar fibroblasts in a rabbit ear model. Eur J Pharmacol 791:647–54.
  • Gong YF, Zhang XM, Yu J, et al. (2017). Effect of recombinant human endostatin on hypertrophic scar fibroblast apoptosis in a rabbit ear model. Biomed Pharmacother 91:680–6.
  • Goyal A, Gubbiotti MA, Chery DR, et al. (2016). Endorepellin-evoked autophagy contributes to angiostasis. J Biol Chem 291:19245–56.
  • Hajitou A, Grignet C, Devy L, et al. (2002). The antitumoral effect of endostatin and angiostatin is associated with a down-regulation of vascular endothelial growth factor expression in tumor cells. Faseb J 16:1802–4.
  • Hall A. (2012). Rho family gtpases. Biochem Soc Trans 40:1378–82.
  • Han Q, Fu Y, Zhou H, et al. (2007). Contributions of zn(ii)-binding to the structural stability of endostatin. FEBS Lett 581:3027–32.
  • Han Z, Wang Z, Song C, et al. (2020). Fasudil suppresses renal fibrosis in diabetic rats through pi3k/akt signaling pathway. Panminerva Medica. doi:10.23736/S0031-0808.19.03793-5.
  • Hanai J, Gloy J, Karumanchi SA, et al. (2002). Endostatin is a potential inhibitor of wnt signaling. J Cell Biol 158:529–39.
  • Heasman SJ, Ridley AJ. (2008). Mammalian rho gtpases: New insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701.
  • Hellebrekers BW, Kooistra T. (2011). Pathogenesis of postoperative adhesion formation. Br J Surg 98:1503–16.
  • Hill CS. (2016). Transcriptional control by the smads. Cold Spring Harb Perspect Biol 8. doi:10.1101/cshperspect.a022079.
  • Hoesel B, Schmid JA. (2013). The complexity of NF-κB signaling in inflammation and cancer . Mol Cancer 12:86.
  • Hu B, Phan SH. (2016). Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res 108:57–64.
  • Hu S, Zhang Y. (2010). Endostar-loaded peg-plga nanoparticles: In vitro and in vivo evaluation. Int J Nanomedicine 5:1039–48.
  • Huang C, Ogawa R. (2012). Fibroproliferative disorders and their mechanobiology. Connect Tissue Res 53:187–96.
  • Huang XY, Chen FH, Li J, et al. (2008). Mechanism of fibroblast-like synoviocyte apoptosis induced by recombinant human endostatin in rats with adjuvant arthritis. Anat Rec (Hoboken) 291:1029–37.
  • Huang XY, Zhang XM, Chen FH, et al. (2014). Anti-proliferative effect of recombinant human endostatin on synovial fibroblasts in rats with adjuvant arthritis. Eur J Pharmacol 723:7–14.
  • Humphreys BD. (2018). Mechanisms of renal fibrosis. Annu Rev Physiol 80:309–26.
  • Isobe K, Kuba K, Maejima Y, et al. (2010). Inhibition of endostatin/collagen XVIII deteriorates left ventricular remodeling and heart failure in rat myocardial infarction model. Circ J 74:109–19. 10.1253/circj.cj-09-0486 19966499
  • Jin X, Ren S, Macarak E, et al. (2016). Pathobiological mechanisms of peritoneal adhesions: The mesenchymal transition of rat peritoneal mesothelial cells induced by TGF-β1 and IL-6 requires activation of Erk1/2 and Smad2 linker region phosphorylation . Matrix Biol 51:55–64.
  • Jun JI, Lau LF. (2018). Resolution of organ fibrosis. J Clin Invest 128:97–107.
  • Karumanchi SA, Jha V, Ramchandran R, et al. (2001). Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 7:811–22.
  • Katz LH, Likhter M, Jogunoori W, et al. (2016). TGF-β signaling in liver and gastrointestinal cancers . Cancer Lett 379:166–72.
  • Kaushik S, Cuervo AM. (2018). The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–81.
  • Kim KM, Han CY, Kim JY, et al. (2018). Gα12 overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. J Hepatol 68:493–504.
  • Kim YM, Jang JW, Lee OH, et al. (2000). Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res 60:5410–3.
  • Kimura T, Takabatake Y, Takahashi A, et al. (2011). Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 22:902–13.
  • Klinkhammer BM, Floege J, Boor P. (2018). Pdgf in organ fibrosis. Mol Aspects Med 62:44–62.
  • Kou L, Jiang X, Xiao S, et al. (2020). Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release 318:25–37.
  • Levine B, Kroemer G. (2019). Biological functions of autophagy genes: A disease perspective. Cell 176:11–42.
  • Li TT, Liu MR, Pei DS. (2020). Friend or foe, the role of egr-1 in cancer. Med Oncol 37:7.
  • Li TZ, Kim SM, Hur W, et al. (2017). Elk-3 contributes to the progression of liver fibrosis by regulating the epithelial-mesenchymal transition. Gut and Liver 11:102–11.
  • Li Y, Ren HT. (2017). Endostatin inhibits fibrosis by modulating the pdgfr/erk signal pathway: An in vitro study. J Zhejiang Univ Sci B 18:994–1001.
  • Li Z, Liu L, Chen Y. (2020). Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier. Acta Biomater 110:119–28.
  • Liu W, Qin F, Wu F, et al. (2020). Sodium aescinate significantly suppress postoperative peritoneal adhesion by inhibiting the rhoa/rock signaling pathway. Phytomedicine 69:153193.
  • Loirand G. (2015). Rho kinases in health and disease: From basic science to translational research. Pharmacol Rev 67:1074–95.
  • Lopez-de la Mora DA, Sanchez-Roque C, Montoya-Buelna M, et al. (2015). Role and new insights of pirfenidone in fibrotic diseases. Int J Med Sci 12:840–7.
  • Luedde T, Schwabe RF. (2011). NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma . Nat Rev Gastroenterol Hepatol 8:108–18.
  • Luo Y, Xie X, Luo D, et al. (2017). The role of halofuginone in fibrosis: more to be explored?. J Leukoc Biol 102:1333–45. 10.1189/jlb.3RU0417-148RR 28986385
  • MacDonald NJ, Shivers WY, Narum DL, et al. (2001). Endostatin binds tropomyosin. A potential modulator of the antitumor activity of endostatin. J Biol Chem 276:25190–6.
  • Maekawa M, Ishizaki T, Boku S, et al. (1999). Signaling from rho to the actin cytoskeleton through protein kinases rock and lim-kinase. Science (New York, N.Y.) 285:895–8.
  • Marcu KB, Otero M, Olivotto E, et al. (2010). Nf-kappab signaling: Multiple angles to target oa. Curr Drug Targets 11:599–613.
  • Massague J, Wotton D. (2000). Transcriptional control by the tgf-beta/smad signaling system. Embo J 19:1745–54.
  • Massague J, Blain SW, Lo RS. (2000). Tgfbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309.
  • Masszi A, Ciano CD, Sirokmany G, et al. (2003). Central role for rho in tgf-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. Am J Physiol Renal Physiol 284:F911–924.
  • McClelland AD, Herman-Edelstein M, Komers R, et al. (2015). Mir-21 promotes renal fibrosis in diabetic nephropathy by targeting pten and smad7. Clinical Science (London, England: 1979) 129:1237–49.
  • Meng XM, Nikolic-Paterson DJ, Lan HY. (2016). TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–38.
  • Miyazawa K, Miyazono K. (2017). Regulation of tgf-beta family signaling by inhibitory smads. Cold Spring Harbor Perspect Biol 9. doi:10.1101/cshperspect.a022095.
  • Mizushima N, Levine B, Cuervo AM, et al. (2008). Autophagy fights disease through cellular self-digestion. Nature 451:1069–75.
  • Moris D, Chakedis J, Rahnemai-Azar AA, et al. (2017). Postoperative abdominal adhesions: Clinical significance and advances in prevention and management. J Gastrointest Surg 21:1713–22.
  • Morishita H, Mizushima N. (2019). Diverse cellular roles of autophagy. Annu Rev Cell Dev Biol 35:453–75.
  • Nagatoya K, Moriyama T, Kawada N, et al. (2002). Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int 61:1684–95.
  • Neill T, Kapoor A, Xie C, et al. (2021). A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 100-101:118–49.
  • Nguyen TM, Subramanian IV, Xiao X, et al. (2009). Endostatin induces autophagy in endothelial cells by modulating beclin 1 and beta-catenin levels. J Cell Mol Med 13:3687–98.
  • Nieto MA, Huang RY, Jackson RA, et al. (2016). Emt: 2016. Cell 166:21–45.
  • Nishimoto T, Mlakar L, Takihara T, et al. (2015). An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model. Int Immunopharmacol 28:1102–5.
  • Oeckinghaus A, Ghosh S. (2009). The nf-kappab family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034.
  • Oku M, Sakai Y. (2018). Three distinct types of microautophagy based on membrane dynamics and molecular machineries. Bioessays 40:e1800008.
  • O'Reilly MS, Boehm T, Shing Y, et al. (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–85.
  • Papadopoulos N, Lennartsson J. (2018). The pdgf/pdgfr pathway as a drug target. Mol Aspects Med 62:75–88.
  • Pehrsson M, Bager CL, Karsdal MA.Biochemistry of Collagens, Laminins and Elastin, 2019, Second Edition, Chapter 18-Type XVIII collagen:149-162. doi.org/10.1016/B978-0-12-817068-7.00018-5.
  • Piek E, Ju WJ, Heyer J, et al. (2001). Functional characterization of transforming growth factor beta signaling in smad2- and smad3-deficient fibroblasts. J Biol Chem 276:19945–53.
  • Poluzzi C, Iozzo RV, Schaefer L. (2016). Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev 97:156–73.
  • Rehn M, Veikkola T, Kukk-Valdre E, et al. (2001). Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci U S A 98:1024–9.
  • Ren H, Li Y, Chen Y, et al. (2019). Endostatin attenuates pdgf-bb- or tgf-beta1-induced hscs activation via suppressing rhoa/rock1 signal pathways. Drug design. DDDT Volume 13:285–90.
  • Richter AG, McKeown S, Rathinam S, et al. (2009). Soluble endostatin is a novel inhibitor of epithelial repair in idiopathic pulmonary fibrosis. Thorax 64:156–61.
  • Rong B, Yang S, Li W, et al. (2012). Systematic review and meta-analysis of endostar (rh-endostatin) combined with chemotherapy versus chemotherapy alone for treating advanced non-small cell lung cancer. World Journal of Surgical Oncology 10:170.
  • Roy S, Clark CJ, Mohebali K, et al. (2004). Reactive oxygen species and egr-1 gene expression in surgical postoperative peritoneal adhesions. World J Surg 28:316–20.
  • Satoh S, Yamaguchi T, Hitomi A, et al. (2002). Fasudil attenuates interstitial fibrosis in rat kidneys with unilateral ureteral obstruction. Eur J Pharmacol 455:169–74.
  • Shi H, Huang Y, Zhou H, et al. (2007). Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110:2899–906.
  • Shichiri M, Hirata Y. (2001). Antiangiogenesis signals by endostatin. Faseb J 15:1044–53.
  • Sil S, Periyasamy P, Thangaraj A, et al. (2018). Pdgf/pdgfr axis in the neural systems. Mol Aspects Med 62:63–74.
  • Stewart AG, Thomas B, Koff J. (2018). Tgf-beta: Master regulator of inflammation and fibrosis. Respirology (Carlton, Vic.) 23:1096–7.
  • Stone RC, Pastar I, Ojeh N, et al. (2016). Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 365:495–506.
  • Sudhakar A, Sugimoto H, Yang C, et al. (2003). Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A 100:4766–71.
  • Sugiyama A, Hirano Y, Okada M, Yamawaki H. (2018). Endostatin Stimulates Proliferation and Migration of Myofibroblasts Isolated from Myocardial Infarction Model Rats. Int J Mol Sci 19:10.3390/ijms19030741
  • Sun G, Reddy MA, Yuan H, et al. (2010). Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21:2069–80.
  • Tabruyn SP, Memet S, Ave P, et al. (2009). Nf-kappab activation in endothelial cells is critical for the activity of angiostatic agents. Mol Cancer Ther 8:2645–54.
  • Tada S, Iwamoto H, Nakamuta M, et al. (2001). A selective rock inhibitor, y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats. J Hepatol 34:529–36.
  • Takagaki Y, Lee SM, Dongqing Z, et al. (2020). Endothelial autophagy deficiency induces il6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy 16:1905–14.
  • Tanabe K, Maeshima Y, Ichinose K, et al. (2007). Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. Kidney Int 71:227–38.
  • Tang C, Livingston MJ, Liu Z, et al. (2020). Autophagy in kidney homeostasis and disease. Nat Rev Nephrol 16:489–508.
  • ten Broek RP, Issa Y, van Santbrink EJ, et al. (2013). Burden of adhesions in abdominal and pelvic surgery: Systematic review and met-analysis. BMJ 347:f5588.
  • Thannickal VJ, Zhou Y, Gaggar A, et al. (2014). Fibrosis: Ultimate and proximate causes. J Clin Invest 124:4673–7.
  • Tjin Tham Sjin RM, Satchi-Fainaro R, Birsner AE, et al. (2005). A 27-amino-acid synthetic peptide corresponding to the nh2-terminal zinc-binding domain of endostatin is responsible for its antitumor activity. Cancer Res 65:3656–63.
  • Tong Y, Zhong K, Tian H, et al. (2010). Characterization of a monopeg20000-endostar. Int J Biol Macromol 46:331–6.
  • Tschumperlin DJ, Ligresti G, Hilscher MB, et al. (2018). Mechanosensing and fibrosis. J Clin Invest 128:74–84.
  • Wang J, Sun L, Nie Y, et al. (2020). Protein kinase c δ (PKCδ) Attenuates Bleomycin Induced Pulmonary Fibrosis via Inhibiting NF-κB Signaling Pathway. Front Physiol 11:367.
  • Wickstrom SA, Alitalo K, Keski-Oja J. (2002). Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Research 62:5580–9.
  • Wickstrom SA, Alitalo K, Keski-Oja J. (2003). Endostatin associates with lipid rafts and induces reorganization of the actin cytoskeleton via down-regulation of rhoa activity. J Biol Chem 278:37895–901.
  • Wickstrom SA, Alitalo K, Keski-Oja J. (2005). Endostatin signaling and regulation of endothelial cell-matrix interactions. Adv Cancer Res 94:197–229.
  • Wickstrom SA, Veikkola T, Rehn M, et al. (2001). Endostatin-induced modulation of plasminogen activation with concomitant loss of focal adhesions and actin stress fibers in cultured human endothelial cells. Cancer Res 61:6511–6.
  • Wynn TA. (2007). Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117:524–9.
  • Xiao L, Yang S, Hao J, et al. (2015). Endostar attenuates melanoma tumor growth via its interruption of b-fgf mediated angiogenesis. Cancer Lett 359:148–54.
  • Xu P, Liu J, Derynck R. (2012). Post-translational regulation of tgf-beta receptor and smad signaling. FEBS Lett 586:1871–84.
  • Yamaguchi Y, Takihara T, Chambers RA, et al. (2012). A peptide derived from endostatin ameliorates organ fibrosis. Sci Transl Med 4:136ra71–ra171.
  • Yu F, Guo Y, Chen B, et al. (2015). Microrna-17-5p activates hepatic stellate cells through targeting of smad7. Lab Invest 95:781–9.
  • Yu L, Border WA, Huang Y, et al. (2003). Tgf-beta isoforms in renal fibrogenesis. Kidney Int 64:844–56.
  • Yuan W, Varga J. (2001). Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves smad3. J Biol Chem 276:38502–10.
  • Zhang Y, Shen L, Zhu H, et al. (2020). PGC-1α regulates autophagy to promote fibroblast activation and tissue fibrosis. Ann Rheum Dis 79:1227–33.
  • Zhao H, Wang Y, Qiu T, et al. (2020). Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin Chim Acta 502:139–47.