2,336
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Local drug delivery using poly(lactic-co-glycolic acid) nanoparticles in thermosensitive gels for inner ear disease treatment

, , , , , , & ORCID Icon show all
Pages 2268-2277 | Received 30 Aug 2021, Accepted 04 Oct 2021, Published online: 20 Oct 2021

References

  • Altındal DÇ, Gümüşderelioğlu M. (2016). Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells. J Microencapsul 33:53–63.
  • Ay Şenyiğit Z, Karavana SY, Ilem Ozdemir D, et al. (2015). Design and evaluation of an intravesical delivery system for superficial bladder cancer: preparation of gemcitabine HCl-loaded chitosan-thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. Int J Nanomedicine 10:6493–507.
  • Ban E, Park M, Jeong S, et al. (2017). Poloxamer-based thermoreversible gel for topical delivery of emodin: influence of P407 and P188 on solubility of emodin and its application in cellular activity screening. Molecules 22:246.
  • Ahn JB, Kim D-H, Lee S-E, et al. (2019). Improvement of the dissolution rate and bioavailability of fenofibrate by the supercritical anti-solvent process. Int J Pharm 564:263–72.
  • Blasi P. (2019). Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview. J Pharm Investig 49:337–46.
  • Buwalda SJ, Boere KWM, Dijkstra PJ, et al. (2014). Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–73.
  • Byeon JC, Lee S-E, Kim T-H, et al. (2019). Design of novel proliposome formulation for antioxidant peptide, glutathione with enhanced oral bioavailability and stability. Drug Deliv 26:216–25.
  • Cai H, Liang Z, Huang W, et al. (2017). Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int J Pharm 532:55–65.
  • Cai H, Wen X, Wen L, et al. (2014). Enhanced local bioavailability of single or compound drugs delivery to the inner ear through application of PLGA nanoparticles via round window administration. Int J Nanomedicine 9:5591–601.
  • Chiang Z-C, Yu S-H, Chao A-C, Dong G-C. (2012). Preparation and characterization of dexamethasone-immobilized chitosan scaffold. J Biosci Bioeng 113:654–60.
  • Chibas LC, Cintra PP, Moreira MR, et al. (2019). Polyalthic acid in polymeric nanoparticles causes selective growth inhibition and genotoxicity in MCF-7 cells. Nat Prod Commun 14:1934578X1984270.
  • Choi J-S, Cao J, Naeem M, et al. (2014). Size-controlled biodegradable nanoparticles: preparation and size-dependent cellular uptake and tumor cell growth inhibition. Colloids Surf B Biointerfaces 122:545–51.
  • Choi SG, Baek EJ, Davaa E, et al. (2013). Topical treatment of the buccal mucosa and wounded skin in rats with a triamcinolone acetonide-loaded hydrogel prepared using an electron beam. Int J Pharm 447:102–8.
  • Dai J, Long W, Liang Z, et al. (2018). A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles. Drug Dev Ind Pharm 44:89–98.
  • Elmowafy EM, Tiboni M, Soliman ME. (2019). Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig 49:347–80.
  • Engleder E, Honeder C, Klobasa J, et al. (2014). Preclinical evaluation of thermoreversible triamcinolone acetonide hydrogels for drug delivery to the inner ear. Int J Pharm 471:297–302.
  • Ersner MS, Spiegel EA, Alexander MH. (1951). Transtympanic injection of anesthetics for the treatment of Méniére's syndrome. AMA Arch Otolaryngol 54:43–52.
  • Freitas LM, Antunes FTT, Obach ES, et al. (2021). Anti-inflammatory effects of a topical emulsion containing Helianthus annuus oil, glycerin, and vitamin B3 in mice. J Pharm Investig 51:223–32.
  • Ge X, Jackson RL, Liu J, et al. (2007). Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol Head Neck Surg 137:619–23.
  • Ghorbani F, Nojehdehian H, Zamanian A. (2016). Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Mater Sci Eng C Mater Biol Appl 69:208–20.
  • Govender T, Stolnik S, Garnett MC, et al. (1999). PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 57:171–85.
  • Gu X, Zheng Y. (2015). Preparation, characterization, and in vivo study of rhein-loaded poly(lactic-co-glycolic acid) nanoparticles for oral delivery. Drug Des Devel Ther 9:2301–2309.
  • Han FY, Thurecht KJ, Whittaker AK, Smith MT. (2016). Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol 7:185.
  • Hargunani CA, Kempton JB, DeGagne JM, Trune DR. (2006). Intratympanic injection of dexamethasone: time course of inner ear distribution and conversion to its active form. Otol Neurotol 27:564–9.
  • Hickey T, Kreutzer D, Burgess DJ, Moussy F. (2002). Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials 23:1649–56.
  • Juhn SK, Rybak LP, Fowlks WL. (1982). Transport characteristics of the blood–perilymph barrier. Am J Otolaryngol 3:392–6.
  • Kang B-S, Choi J-S, Lee S-E, et al. (2017). Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles. Carbohydr Polym 159:39–47.
  • Karim MR, Islam MS. (2011). Thermal behavior with mechanical property of fluorinated silane functionalized superhydrophobic pullulan/poly(vinyl alcohol) blends by electrospinning method. J Nanomater 2011:979458.
  • Keiler S, Richter C-P. (2001). Cochlear dimensions obtained in hemicochleae of four different strains of mice: CBA/CaJ, 129/CD1, 129/SvEv and C57BL/6J. Hear Res 162:91–104.
  • Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN. (2013). Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci 8:3483–93.
  • Kim D-H, Martin DC. (2006). Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 27:3031–7.
  • Kim D-K. (2017). Nanomedicine for inner ear diseases: a review of recent in vivo studies. Biomed Res Int 2017:3098230.
  • Lajud SA, Han Z, Chi F-L, et al. (2013). A regulated delivery system for inner ear drug application. J Control Release 166:268–76.
  • Laurell G, Ekborn A, Viberg A, Canlon B. (2007). Effects of a single high dose of cisplatin on the melanocytes of the stria vascularis in the guinea pig. Audiol Neurootol 12:170–8.
  • Lemoine D, Francois C, Kedzierewicz F, et al. (1996). Stability study of nanoparticles of poly(ɛ-caprolactone), poly(d,l-lactide) and poly(d,l-lactide-co-glycolide). Biomaterials 17:2191–7.
  • Mäder K, Lehner E, Liebau A, Plontke SK. (2018). Controlled drug release to the inner ear: concepts, materials, mechanisms, and performance. Hear Res 368:49–66.
  • Mao Y, Li X, Chen G, Wang S. (2016). Thermosensitive hydrogel system with paclitaxel liposomes used in localized drug delivery system for in situ treatment of tumor: better antitumor efficacy and lower toxicity. J Pharm Sci 105:194–204.
  • Milojevic Z, Agbaba D, Eric S, et al. (2002). High-performance liquid chromatographic method for the assay of dexamethasone and xylometazoline in nasal drops containing methyl p-hydroxybenzoate. J Chromatogr A 949:79–82.
  • Mülazımoğlu S, Ocak E, Kaygusuz G, Gökcan MK. (2017). Retroauricular approach for targeted cochlear therapy experiments in Wistar albino rats. Balkan Med J 34:200–5.
  • Muthu MS, Feng S-S. (2009). Pharmaceutical stability aspects of nanomedicines. Nanomedicine 4:857–60.
  • Nedzelski JM, Chiong CM, Fradet G, et al. (1993). Intratympanic gentamicin instillation as treatment of unilateral Menière’s disease: update of an ongoing study. Am J Otol 14:278–82.
  • Ono C, Tanaka M. (2003). Binding characteristics of fluoroquinolones to synthetic levodopa melanin. J Pharm Pharmacol 55:1127–33.
  • Pool H, Quintanar D, de Dios Figueroa J, et al. (2012). Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles. J Nanomater 86:1–12.
  • Prakash K, Sireesha KR, Kumari AS. (2012). Stability indicating HPLC method for simultaneous determination of dexamethasone sodium phosphate and chloramphenicol in bulk and formulations. Int J Pharm Pharm Sci 4:505–10.
  • Russo E, Villa C. (2019). Poloxamer hydrogels for biomedical applications. Pharmaceutics 11:671.
  • Saegusa Y, Tabata H. (2003). Usefulness of infrared thermometry in determining body temperature in mice. J Vet Med Sci 65:1365–7.
  • Salt AN, Hartsock J, Plontke S, et al. (2011). Distribution of dexamethasone and preservation of inner ear function following intratympanic delivery of a gel-based formulation. Audiol Neurootol 16:323–35.
  • Salt AN, Plontke SK. (2018). Pharmacokinetic principles in the inner ear: influence of drug properties on intratympanic applications. Hear Res 368:28–40.
  • Schmolka IR. (1972). Artificial skin. I. Preparation and properties of Pluronic F-127 gels for treatment of burns. J Biomed Mater Res 6:571–82.
  • Schoubben A, Ricci M, Giovagnoli S. (2019). Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. J Pharm Investig 49:381–404.
  • Schuknecht HF. (1956). Ablation therapy for the relief of Meniere’s disease. Laryngoscope 66:859–70.
  • Shkodra-Pula B, Grune C, Traeger A, et al. (2019). Effect of surfactant on the size and stability of PLGA nanoparticles encapsulating a protein kinase C inhibitor. Int J Pharm 566:756–64.
  • Soken H, Robinson BK, Goodman SS, et al. (2013). Mouse cochleostomy: a minimally invasive dorsal approach for modeling cochlear implantation. Laryngoscope 123:E109–E15.
  • Sun C, Wang X, Chen D, et al. (2016). Dexamethasone loaded nanoparticles exert protective effects against cisplatin-induced hearing loss by systemic administration. Neurosci Lett 619:142–8.
  • Swider E, Maharjan S, Houkes K, et al. (2019). Förster resonance energy transfer-based stability assessment of PLGA nanoparticles in vitro and in vivo. ACS Appl Bio Mater 2:1131–40.
  • Tamura T, Kita T, Nakagawa T, et al. (2005). Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope 115:2000–5.
  • Toth AA, Parnes LS. (1995). Intratympanic gentamicin therapy for Menière’s disease: preliminary comparison of two regimens. J Otolaryngol 24:340–4.
  • Van De Water TR, Abi Hachem RN, Dinh CT, et al. (2010). Conservation of hearing and protection of auditory hair cells against trauma-induced losses by local dexamethasone therapy: molecular and genetic mechanisms. Cochlear Implants Int 11:42–55.
  • Wang X, Dellamary L, Fernandez R, et al. (2009). Dose-dependent sustained release of dexamethasone in inner ear cochlear fluids using a novel local delivery approach. Audiol Neurootol 14:393–401.
  • Wrześniok D, Surazyński A, Karna E, et al. (2005). Melanin counter act puromycin-induced inhibition of collagen and DNA biosynthesis in human skin fibroblasts. Life Sci 77:528–38.
  • Yoon JJ, Kim JH, Park TG. (2003). Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method. Biomaterials 24:2323–9.
  • Zhang X, Chen G, Wen L, et al. (2013). Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur J Pharm Sci 48:595–603.
  • Zhang Y, Zhang W, Löbler M, et al. (2011). Inner ear biocompatibility of lipid nanocapsules after round window membrane application. Int J Pharm 404:211–9.