1,643
Views
7
CrossRef citations to date
0
Altmetric
Research Article

ROS-Activated homodimeric podophyllotoxin nanomedicine with self-accelerating drug release for efficient cancer eradication

&
Pages 2361-2372 | Received 30 Jul 2021, Accepted 11 Oct 2021, Published online: 08 Nov 2021

References

  • Behzadi S, Serpooshan V, Tao W, et al. (2017). Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46:4218–44.
  • Dai L, Li X, Duan X, et al. (2019). A pH/ROS cascade-responsive charge-reversal nanosystem with self-amplified drug release for synergistic oxidation-chemotherapy. Adv Sci 6:1801807.
  • Dasari S, Ali SM, Zheng G, et al. (2017). Vitamin K and its analogs: potential avenues for prostate cancer management. Oncotarget 8:57782–99.
  • Ding L, Wang Q, Shen M, et al. (2017). Thermoresponsive nanocomposite gel for local drug delivery to suppress the growth of glioma by inducing autophagy. Autophagy 13:1176–90.
  • Duncan R, Vicent MJ. (2010). Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev 62:272–82.
  • Feng W, Zong M, Wan L, et al. (2020). pH/redox sequentially responsive nanoparticles with size shrinkage properties achieve deep tumor penetration and reversal of multidrug resistance. Biomater Sci 8:4767–78.
  • Hossen MN, Wang L, Chinthalapally HR, et al. (2020). Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome. Sci Adv 6:eaba5379.
  • Hu JJ, Lei Q, Peng MY, et al. (2017). A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem. Biomaterials 128:136–46.
  • Huang L, Zhao S, Fang F, et al. (2021). Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 268:120557.
  • Jiang Y, Wang X, Liu X, et al. (2017). Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles. ACS Appl Mater Interfaces 9:211–7.
  • Kumbhar PS, Sakate AM, Patil OB, et al. (2020). Podophyllotoxin-polyacrylic acid conjugate micelles: improved anticancer efficacy against multidrug-resistant breast cancer. J Egypt Natl Canc Inst 32:42.
  • Li J, Sun C, Tao W, et al. (2018). Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials 170:147–55.
  • Li S, Shan X, Wang Y, et al. (2020). Dimeric prodrug-based nanomedicines for cancer therapy. J Control Release 326:510–22.
  • Liu Y, Lv X, Xia S, et al. (2020). PEGylated graphene oxide as a nanocarrier of the disulfide prodrug of podophyllotoxin for cancer therapy. J Nanopart Res 22:281.
  • Ma X, Huang X, Moore Z, et al. (2015). Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy. J Control Release 200:201–11.
  • Mura S, Nicolas J, Couvreur P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003.
  • Ou K, Kang Y, Chen L, et al. (2019). H2O2-responsive nano-prodrug for podophyllotoxin delivery. Biomater Sci 7:2491–8.
  • Pei Q, Hu X, Zheng X, et al. (2018). Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 12:1630–41.
  • Ren X, Santhosh SM, Coppo L, et al. (2019). The combination of ascorbate and menadione causes cancer cell death by oxidative stress and replicative stress. Free Radic Biol Med 134:350–8.
  • Saravanakumar G, Kim J, Kim WJ. (2017). Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci 4:1600124.
  • Sun B, Luo C, Zhang X, et al. (2019). Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat Commun 10:3211.
  • Tang W, Yang Z, He L, et al. (2021). A hybrid semiconducting organosilica-based O2 nanoeconomizer for on-demand synergistic photothermally boosted radiotherapy. Nat Commun 12:523.
  • Tian H, Zhang M, Jin G, et al. (2021). Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy. J Colloid Interface Sci 587:358–66.
  • van der Meel R, Sulheim E, Shi Y, et al. (2019). Smart cancer nanomedicine. Nat Nanotechnol 14:1007–17.
  • Xia MH, Yan XY, Zhou L, et al. (2020). p62 suppressed VK3-induced oxidative damage through Keap1/Nrf2 pathway in human ovarian cancer cells. J Cancer 11:1299–307.
  • Xia Y, Liu S, Li C, et al. (2020). Discovery of a novel ferroptosis inducer-talaroconvolutin A-killing colorectal cancer cells in vitro and in vivo. Cell Death Dis 11:988.
  • Xu C, Song R, Lu P, et al. (2020). A pH-responsive charge-reversal drug delivery system with tumor-specific drug release and ROS generation for cancer therapy. Int J Nanomedicine 15:65–80.
  • Xu X, Saw PE, Tao W, et al. (2017). ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv Mater 29:1700141.
  • Yang GG, Zhang H, Zhang DY, et al. (2018). Cancer-specific chemotherapeutic strategy based on the vitamin K3 mediated ROS regenerative feedback and visualized drug release in vivo. Biomaterials 185:73–85.
  • Ye M, Han Y, Tang J, et al. (2017). A tumor-specific cascade amplification drug release nanoparticle for overcoming multidrug resistance in cancers. Adv Mater 29: 1702342.
  • Yin W, Ke W, Chen W, et al. (2019). Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS-responsive drug release. Biomaterials 195:63–74.
  • Zhang S, Wang Z, Kong Z, et al. (2021). Photosensitizer-driven nanoassemblies of homodimeric prodrug for self-enhancing activation and synergistic chemo-photodynamic therapy. Theranostics 11:6019–32.
  • Zhang X, Rakesh KP, Shantharam CS, et al. (2018). Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: a key current imminent needs. Bioorg Med Chem 26:340–55.
  • Zhao W, Cong Y, Li H-M, et al. (2021). Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat Prod Rep 38:470–88.
  • Zhu J, Huo Q, Xu M, et al. (2018). Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 10:18387–97.
  • Zuo S, Sun B, Yang Y, et al. (2020). Probing the superiority of diselenium bond on docetaxel dimeric prodrug nanoassemblies: small roles taking big responsibilities. Small 16:e2005039.