1,524
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Metronomic delivery of orally available pemetrexed-incorporated colloidal dispersions for boosting tumor-specific immunity

, , , , , , , & show all
Pages 2313-2328 | Received 19 Aug 2021, Accepted 11 Oct 2021, Published online: 03 Nov 2021

References

  • André N, Carré M, Pasquier E. (2014). Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol 11:413–31.
  • Banissi C, Ghiringhelli F, Chen L, et al. (2009). Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–34.
  • Chen D, Mellman I. (2017). Elements of cancer immunity and the cancer-immune set point. Nature 541:321–30.
  • Choi JU, Maharjan R, Pangeni R, et al. (2020). Modulating tumor immunity by metronomic dosing of oxaliplatin incorporated in multiple oral nanoemulsion. J Control Release 322:13–30.
  • Darvin P, Toor SM, Sasidharan Nair V, et al. (2018). Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50:1–11.
  • Deng F, Bae YH. (2020). Bile acid transporter-mediated oral drug delivery. J Control Release 327:100–16.
  • Dezani TM, Dezani AB, Junior JB, et al. (2016). Single-pass intestinal perfusion (SPIP) and prediction of fraction absorbed and permeability in humans: a study with antiretroviral drugs. Eur J Pharm Biopharm 104:131–9.
  • DiMarco RL, Hunt DR, Dewi RE, et al. (2017). Improvement of paracellular transport in the Caco-2 drug screening model using protein-engineered substrates. Biomaterials 129:152–62.
  • Garon EB, Hellmann MD, Rizvi NA, et al. (2019). Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J Clin Oncol 37:2518–27.
  • Ghiringhelli F, Menard C, Puig PE, et al. (2007). Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–8.
  • Gnoni A, Silvestris N, Licchetta A, et al. (2015). Metronomic chemotherapy from rationale to clinical studies: a dream or reality? Crit Rev Oncol Hematol 95:46–61.
  • Gupta S, Kesarla R, Omri A. (2013). Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm 2013:848043–16.
  • Hanauske AR, Chen V, Paoletti P, et al. (2001). Pemetrexed disodium: a novel antifolate clinically active against multiple solid tumors. Oncologist 6:363–73.
  • Hao YB, Yi SY, Ruan J, et al. (2014). New insights into metronomic chemotherapy-induced immunoregulation. Cancer Lett 354:220–6.
  • Jha SK, Han HS, Subedi L, et al. (2020). Enhanced oral bioavailability of an etoposide multiple nanoemulsion incorporating a deoxycholic acid derivative-lipid complex. Drug Deliv 27:1501–13.
  • Kanda T, Foucand L, Nakamura Y, et al. (1998). Regulation of expression of human intestinal bile acid-binding protein in Caco-2 cells. Biochem J 330:261–5.
  • Kou L, Bhutia YD, Yao Q, et al. (2018). Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front Pharmacol 9:1–16.
  • Li KM, Rivory LP, Clarke SJ. (2007). Pemetrexed pharmacokinetics and pharmacodynamics in a phase I/II study of doublet chemotherapy with vinorelbine: implications for further optimisation of pemetrexed schedules. Br J Cancer 97:1071–6.
  • Maharjan R, Pangeni R, Jha SK, et al. (2019). Anti-angiogenic effect of orally available pemetrexed for metronomic chemotherapy. Pharmaceutics 11:1–22.
  • Mahmud F, Jeon OC, Alam F, et al. (2018). Oral pemetrexed facilitates low-dose metronomic therapy and enhances antitumor efficacy in lung cancer. J Control Release 284:160–70.
  • Miyake M, Minami T, Hirota M, et al. (2006). Novel oral formulation safely improving intestinal absorption of poorly absorbable drugs: utilization of polyamines and bile acids. J Control Release 111:27–34.
  • Moghimipour E, Ameri A, Handali S. (2015). Absorption-enhancing effects of bile salts. Molecules 20:14451–73.
  • Ng TL, Liu Y, Dimou A, et al. (2019). Predictive value of oncogenic driver subtype, programmed death-1 ligand (PD-L1) score, and smoking status on the efficacy of PD-1/PD-L1 inhibitors in patients with oncogene-driven non-small cell lung cancer. Am Cancer Soc 125:1038–49.
  • Pangeni R, Choi JU, Panthi VK, et al. (2018a). Enhanced oral absorption of pemetrexed by ion-pairing complex formation with deoxycholic acid derivative and multiple nanoemulsion formulations: preparation, characterization, and in vivo oral bioavailability and anticancer effect. Int J Nanomedicine 13:3329–51.
  • Pangeni R, Jha SK, Maharjan R, et al. (2019). Intestinal transport mechanism and in vivo anticancer efficacy of a solid oral formulation incorporating an ion-pairing complex of pemetrexed with deoxycholic acid derivative. Int J Nanomedicine 14:6339–56.
  • Pangeni R, Panthi VK, Yoon IS, et al. (2018b). Preparation, characterization, and in vivo evaluation of an oral multiple nanoemulsive system for co-delivery of pemetrexed and quercetin. Pharmaceutics 10:158–22.
  • Park J, Choi JU, Kim K, et al. (2017). Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials 147:145–54.
  • Pavlović N, Goločorbin-Kon S, Ðanić M, et al. (2018). Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol 9:1–23.
  • Raimondi F, Santoro P, Barone MV, et al. (2008). Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol 294:G906–13.
  • Reck M, Rodríguez-Abreu D, Robinson AG, et al. (2019). Updated Analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol 37:537–46.
  • Rinaldi DA, Kuhn JG, Burris HA, et al. (1999). A phase I evaluation of multitargeted antifolate (MTA, LY231514), administered every 21 days, utilizing the modified continual reassessment method for dose escalation. Cancer Chemother Pharmacol 44:372–80.
  • Simsek C, Esin E, Yalcin S. (2019). Metronomic chemotherapy: a systematic review of the literature and clinical experience. J Oncol 2019:5483791–31.
  • Soni K, Mujtaba A, Kohli K. (2017). Lipid drug conjugate nanoparticle as a potential nanocarrier for the oral delivery of pemetrexed diacid: formulation design, characterization, ex vivo, and in vivo assessment. Int J Biol Macromol 103:139–51.
  • Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. (2013). Application of bile acids in drug formulation and delivery. Front Life Sci 7:112–22.
  • Tian C, Asghar S, Wu Y, et al. (2017). Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers. IJN 12:7897–911.
  • Wu J, Waxman DJ. (2018). Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett 419:210–21.
  • Wu Z, Man S, Sun R, et al. (2020). Recent advances and challenges of immune checkpoint inhibitors in immunotherapy of non-small cell lung cancer. Int Immunopharmacol 85:1066–13.
  • Zhou Y, Maxwell KN, Sezgin E, et al. (2013). Bile acids modulate signaling by functional perturbation of plasma membrane domains. J Biol Chem 288:35660–70.