1,700
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Redox-sensitive iodinated polymersomes carrying histone deacetylase inhibitor as a dual-functional nano-radiosensitizer for enhanced radiotherapy of breast cancer

, , , , , , , , & show all
Pages 2301-2309 | Received 30 Aug 2021, Accepted 11 Oct 2021, Published online: 03 Nov 2021

References

  • Attia M, Anton N, Chiper M, et al. (2014). Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. ACS Nano 8:10537–50.
  • Cai YY, Yap CW, Wang Z, et al. (2010). Solubilization of vorinostat by cyclodextrins. J Clin Pharm Ther 35:521–6.
  • Chen Y, Guo M, Qu D, et al. (2020). Furin-responsive triterpenine-based liposomal complex enhances anticervical cancer therapy through size modulation. Drug Deliv 27:1608–24.
  • Chen Y, Su M, Li Y, et al. (2017). Enzymatic PEG-poly(amine-co-disulfide ester) nanoparticles as pH- and redox-responsive drug nanocarriers for efficient antitumor treatment. ACS Appl Mater Interfaces 9:30519–35.
  • Cheng K, Sano M, Jenkins C, et al. (2018). Synergistically enhancing the therapeutic effect of radiation therapy with radiation activatable and reactive oxygen species-releasing nanostructures. ACS Nano 12:4946–58.
  • Cheng X, Zhang X, Liu P, et al. (2019). Sequential treatment of cell cycle regulator and nanoradiosensitizer achieves enhanced radiotherapeutic outcome. ACS Appl Bio Mater 2:2050–9.
  • Citrin D. (2017). Recent developments in radiotherapy. N Engl J Med 377:1065–75.
  • Dong X, Cheng R, Zhu S, et al. (2020). A heterojunction structured WO2.9-WSe2 nanoradiosensitizer increases local tumor ablation and checkpoint blockade immunotherapy upon low radiation dose. ACS Nano 14:5400–16.
  • Duvic M, Dimopoulos M. (2016). The safety profile of vorinostat (suberoylanilide hydroxamic acid) in hematologic malignancies: a review of clinical studies. Cancer Treat Rev 43:58–66.
  • Fu D, Ni Z, Wu K, et al. (2021). A novel redox-responsive ursolic acid polymeric prodrug delivery system for osteosarcoma therapy. Drug Deliv 28:195–205.
  • Gao C, Zhang Y, Zhang Y, et al. (2020). cRGD-modified and disulfide bond-crosslinked polymer nanoparticles based on iopamidol as a tumor-targeted CT contrast agent. Polym Chem 11:889–99.
  • Gerelchuluun A, Maeda J, Manabe E, et al. (2018). Histone deacetylase inhibitor induced radiation sensitization effects on human cancer cells after photon and hadron radiation exposure. IJMS 19:496.
  • Gong F, Ma J, Jia J, et al. (2021). Synergistic effect of the anti-PD-1 antibody with blood stable and reduction sensitive curcumin micelles on colon cancer. Drug Deliv 28:930–42.
  • Grant S, Easley C, Kirkpatrick P. (2007). Vorinostat. Nat Rev Drug Discov 6:21–2.
  • Hahn M, Dietrich P, Radnik J. (2021). In situ monitoring of the influence of water on DNA radiation damage by near-ambient pressure X-ray photoelectron spectroscopy. Commun Chem 4:50.
  • Hainfeld J, Ridwan S, Stanishevskiy F, et al. (2020). Iodine nanoparticle radiotherapy of human breast cancer growing in the brains of athymic mice. Sci Rep 10:15627.
  • Jiang W, Li Q, Xiao L, et al. (2018a). Hierarchical multiplexing nanodroplets for imaging-guided cancer radiotherapy via DNA damage enhancement and concomitant DNA repair prevention. ACS Nano 12:5684–98.
  • Jiang W, Li Q, Zhu Z, et al. (2018b). Cancer chemoradiotherapy duo: nano-enabled targeting of DNA lesion formation and DNA damage response. ACS Appl Mater Interfaces 10:35734–44.
  • Jiang X, Zhang B, Zhou Z, et al. (2017). Enhancement of radiotherapy efficacy by pleiotropic liposomes encapsulated paclitaxel and perfluorotributylamine. Drug Deliv 24:1419–28.
  • Jin E, Lu Z. (2014). Biodegradable iodinated polydisulfides as contrast agents for CT angiography. Biomaterials 35:5822–9.
  • Kaur J, Jakhmola S, Singh R, et al. (2021). Ultrasonic atomizer-driven development of biocompatible and biodegradable poly(D,L-lactide-co-glycolide) nanocarrier-encapsulated suberoylanilide hydroxamic acid to combat brain cancer. ACS Appl Bio Mater 4:5627–37.
  • Kuang Y, Zhang Y, Zhao Y, et al. (2020). Dual-stimuli-responsive multifunctional Gd2Hf2O7 nanoparticles for MRI-guided combined chemo-/photothermal-/radiotherapy of resistant tumors. ACS Appl Mater Interfaces 12:35928–39.
  • Lehrer E, Singh R, Wang M, et al. (2021). Safety and survival rates associated with ablative stereotactic radiotherapy for patients with oligometastatic cancer: a systematic review and meta-analysis. JAMA Oncol 7:92–106.
  • Li Y, Yun K, Lee H, et al. (2019). Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 197:12–9.
  • Liu C, Li Y, Lin Y, et al. (2020). Synergistic ultrasonic biophysical effect-responsive nanoparticles for enhanced gene delivery to ovarian cancer stem cells. Drug Deliv 27:1018–33.
  • Liu T, Lu T, Yang Y, et al. (2020). New combination treatment from ROS-induced sensitized radiotherapy with nanophototherapeutics to fully eradicate orthotopic breast cancer and inhibit metastasis. Biomaterials 257:120229.
  • Liu X, Zhang X, Zhu M, et al. (2017). PEGylated Au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy. ACS Appl Mater Interfaces 9:279–85.
  • Lu F, Hou L, Wang S, et al. (2021). Lysosome activable polymeric vorinostat encapsulating PD-L1KD for a combination of HDACi and immunotherapy. Drug Deliv 28:963–72.
  • Luan Y, Li J, Bernatchez J, et al. (2019). Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J Med Chem 62:3171–83.
  • Ma T, Liu Y, Wu Q, et al. (2019). Quercetin-modified metal-organic frameworks for dual sensitization of radiotherapy in tumor tissues by inhibiting the carbonic anhydrase IX. ACS Nano 13:4209–19.
  • Manoharan D, Chang L, Wang L, et al. (2021). Synchronization of nanoparticle sensitization and radiosensitizing chemotherapy through cell cycle arrest achieving ultralow X-ray dose delivery to pancreatic tumors. ACS Nano 15:9084–100.
  • Meidanchi A, Akhavan O, Khoei S, et al. (2015). ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Mater Sci Eng C 46:394–9.
  • Nowsheen S, Aziz K, Luo K, et al. (2018). ZNF506-dependent positive feedback loop regulates H2AX signaling after DNA damage. Nat Commun 9:2736.
  • Ortega P, Gómez-González B, Aguilera A. (2019). Rpd3L and Hda1 histone deacetylases facilitate repair of broken forks by promoting sister chromatid cohesion. Nat Commun 10:5178.
  • Pallares R, Abergel R. (2020). Nanoparticles for targeted cancer radiotherapy. Nano Res 13:2887–97.
  • Rodriguez C, Wu Q, Voutsinas J, et al. (2020). A phase II trial of pembrolizumab and vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clin Cancer Res 26:2214.
  • Sankar R, Karthik S, Subramanian N, et al. (2015). Nanostructured delivery system for suberoylanilide hydroxamic acid against lung cancer cells. Mater Sci Eng C Mater Biol Appl 51:362–8.
  • Sarbadhikary P, Dube A. (2017). Enhancement of radiosensitivity of oral carcinoma cells by iodinated chlorin p6 copper complex in combination with synchrotron X-ray radiation. J Synchrotron Radiat 24:1265–75.
  • Song G, Cheng L, Chao Y, et al. (2017). Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater 29:1700996.
  • Wang E, Min Y, Palm R, et al. (2015). Nanoparticle formulations of histone deacetylase inhibitors for effective chemoradiotherapy in solid tumors. Biomaterials 51:208–15.
  • Wu C, Du X, Jia B, et al. (2021). A transformable gold nanocluster aggregate-based synergistic strategy for potentiated radiation/gene therapy of cancer. J Mater Chem B 9:2314–22.
  • Xia D, Hang D, Li Y, et al. (2020). Au-hemoglobin loaded platelet alleviating tumor hypoxia and enhancing the radiotherapy effect with low-dose X-ray. ACS Nano 14:15654–68.
  • Xiao Q, Yang Y, Wei J, et al. (2019). Ultralong circulating choline phosphate liposomal nanomedicines for cascaded chemo-radiotherapy. Biomater Sci 7:1335–44.
  • Xie J, Gong L, Zhu S, et al. (2019). Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv Mater 31:1802244.
  • Yang Y, Zhu H, Wang J, et al. (2018). Enzymatically disulfide-crosslinked chitosan/hyaluronic acid layer-by-layer self-assembled microcapsules for redox-responsive controlled release of protein. ACS Appl Mater Interfaces 10:33493–506.
  • Yu X, Li A, Zhao C, et al. (2017). Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy. ACS Nano 11:3990–4001.
  • Zeng H, Qu J, Jin N, et al. (2016). Feedback activation of leukemia inhibitory factor receptor limits response to histone deacetylase inhibitors in breast cancer. Cancer Cell 30:459–73.
  • Zhang X, Chen X, Jiang Y, et al. (2018). Glutathione-depleting gold nanoclusters for enhanced cancer radiotherapy through synergistic external and internal regulations. ACS Appl Mater Interfaces 10:10601–6.
  • Zong Z, Hua L, Wang Z, et al. (2019). Self-assembled angiopep-2 modified lipid-poly (hypoxic radiosensitized polyprodrug) nanoparticles delivery TMZ for glioma synergistic TMZ and RT therapy. Drug Deliv 26:34–44.
  • Zou Q, Huang J, Zhang X. (2018). One-step synthesis of iodinated polypyrrole nanoparticles for CT imaging guided photothermal therapy of tumors. Small 14:1803101.
  • Zou Y, Wei Y, Sun Y, et al. (2019). Cyclic RGD-functionalized and disulfide-crosslinked iodine-rich polymersomes as a robust and smart theranostic agent for targeted CT imaging and chemotherapy of tumor. Theranostics 9:8061–72.
  • Zu C, Yu Y, Yu C, et al. (2020). Highly loaded deoxypodophyllotoxin nano-formulation delivered by methoxy polyethylene glycol-block-poly (D,L-lactide) micelles for efficient cancer therapy. Drug Deliv 27:248–57.