2,566
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Research progress of nanocarriers for gene therapy targeting abnormal glucose and lipid metabolism in tumors

, , , , &
Pages 2329-2347 | Received 14 Sep 2021, Accepted 11 Oct 2021, Published online: 03 Nov 2021

References

  • Ahonen MA, Asghar MY, Parviainen SJ, et al. (2021). Human adipocyte differentiation and composition of disease-relevant lipids are regulated by miR-221-3p. Biochim Biophys Acta Mol Cell Biol Lipids 1866:158841.
  • Alves-Bezerra M, Cohen DE. (2017). Triglyceride metabolism in the liver. Compr Physiol 8:1–22.
  • Anderson NM, Mucka P, Kern JG, et al. (2018). The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9:216–37.
  • Assmann TS, Cuevas-Sierra A, Riezu-Boj JI, et al. (2020). Comprehensive analysis reveals novel interactions between circulating MicroRNAs and gut microbiota composition in human obesity. IJMS 21:9509.
  • Bandiera S, Pfeffer S, Baumert TF, et al. (2015). miR-122-A key factor and therapeutic target in liver disease. J Hepatol 62:448–57.
  • Bao W, Zhang Y, Li SD, et al. (2019). miR-107-5p promotes tumor proliferation and invasion by targeting estrogen receptor-alpha in endometrial carcinoma. Oncol Rep 41:1575–85.
  • Batrakova EV, Kim MS. (2015). Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405.
  • Boca S, Gulei D, Zimta AA, et al. (2020). Nanoscale delivery systems for microRNAs in cancer therapy. Cell Mol Life Sci 77:1059–86.
  • Bort A, Sanchez BG, de Miguel I, et al. (2020). Dysregulated lipid metabolism in hepatocellular carcinoma cancer stem cells. Mol Biol Rep 47:2635–47.
  • Carracedo A, Cantley LC, Pandolfi PP. (2013). Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13:227–32.
  • Chang SH, Chung YS, Hwang SK, et al. (2012). Lentiviral vector-mediated shRNA against AIMP2-DX2 suppresses lung cancer cell growth through blocking glucose uptake. Mol Cells 33:553–62.
  • Chen BY, Sung CWH, Chen CC, et al. (2019). Advances in exosomes technology. Clin Chim Acta 493:14–9.
  • Chen W, Zhou Y, Zhi X, et al. (2019). Delivery of miR-212 by chimeric peptide-condensed supramolecular nanoparticles enhances the sensitivity of pancreatic ductal adenocarcinoma to doxorubicin. Biomaterials 192:590–600.
  • Cheng XB, Zhang T, Zhu HJ, et al. (2021). Knockdown of lncRNA SNHG4 suppresses gastric cancer cell proliferation and metastasis by targeting miR-204-5p. neo 68:546–56.
  • Choosangtong K, Sirithanakorn C, Adina-Zada A, et al. (2015). Residues in the acetyl CoA binding site of pyruvate carboxylase involved in allosteric regulation. FEBS Lett 589:2073–9.
  • Chu HZ, Han NH, Xu JG. (2021). CMPK1 regulated by miR-130b attenuates response to 5-FU treatment in gastric cancer. Front Oncol 11:637470.
  • Ciccarone F, Vegliante R, Leo LD, et al. (2017). The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer. Semin Cancer Biol 47:50–6.
  • Coleman RA, Lewin TM, Muoio DM. (2000). Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 20:77–103.
  • Crousilles A, Dolan SK, Brear P, et al. (2018). Gluconeogenic precursor availability regulates flux through the glyoxylate shunt in Pseudomonas aeruginosa. J Biol Chem 293:14260–9.
  • Cui YJ, Huang SL, Cao J, et al. (2021). Combined targeting of vascular endothelial growth factor C (VEGFC) and P65 using miR-27b-3p agomir and lipoteichoic acid in the treatment of gastric cancer. J Gastrointest Oncol 12:121–32.
  • Currie E, Schulze A, Zechner R, et al. (2013). Cellular fatty acid metabolism and cancer. Cell Metab 18:153–61.
  • Deiuliis JA. (2016). MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond) 40:88–101.
  • Deng JH, Zheng GY, Li HZ, et al. (2019). MiR-212-5p inhibits the malignant behavior of clear cell renal cell carcinoma cells by targeting TBX15. Eur Rev Med Pharmacol Sci 23:10699–707.
  • Dong YF, Zhang NN, Zhao SM, et al. (2019). miR-221-3p and miR-15b-5p promote cell proliferation and invasion by targeting Axin2 in liver cancer. Oncol Lett 18:6491–500.
  • Du CY, Yan HB, Liang JC, et al. (2017). Polyethyleneimine-capped silver nanoclusters for microRNA oligonucleotide delivery and bacterial inhibition. Int J Nanomed 12:8599–613.
  • Du F, Li ZJ, Zhang GH, et al. (2020). SIRT2, a direct target of miR-212-5p, suppresses the proliferation and metastasis of colorectal cancer cells. J Cell Mol Med 24:9985–98.
  • Esau C, Davis S, Murray SF, et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98.
  • Familtseva A, Jeremic N, Tyagi SC. (2019). Exosomes: cell-created drug delivery systems. Mol Cell Biochem 459:1–6.
  • Fang XH, Bai YQ, Zhang LD, et al. (2020). Silencing circSLAMF6 represses cell glycolysis, migration, and invasion by regulating the miR-204-5p/MYH9 axis in gastric cancer under hypoxia. Biosci Rep 40:BSR20201275.
  • Feng X, Zhang L, Xu S, et al. (2020). ATP-citrate lyase (ACLY) in lipid metabolism and atherosclerosis: an updated review. Prog Lipid Res 77:101006.
  • Fernandes PM, Kinkead J, McNae I, et al. (2020). Biochemical and transcript level differences between the three human phosphofructokinases show optimisation of each isoform for specific metabolic niches. Biochem J 477:4425–41.
  • Fong MY, Zhou W, Liu L, et al. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17:183–94.
  • Ge X, Wang Y, Nie J, et al. (2017). The diagnostic/prognostic potential and molecular functions of long non-coding RNAs in the exosomes derived from the bile of human cholangiocarcinoma. Oncotarget 8:69995–70005.
  • Gifford JB, Hill R. (2018). GRP78 influences chemoresistance and prognosis in cancer. Curr Drug Targets 19:701–8.
  • Gonzalez N, Prieto I, Del Puerto-Nevado L, et al. (2017). 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget 8:18456–85.
  • Gu DN, Jiang MJ, Mei Z, et al. (2017). microRNA-7 impairs autophagy-derived pools of glucose to suppress pancreatic cancer progression. Cancer Lett 400:69–78.
  • Guo YJ, Yu JJ, Wang CX, et al. (2017). miR-212-5p suppresses lipid accumulation by targeting FAS and SCD1. J Mol Endocrinol 59:205–17.
  • Gupta V, Lourenco SP, Hidalgo IJ. (2021). Development of gene therapy vectors: remaining challenges. J Pharm Sci 110:1915–20.
  • Haemmerle G, Zimmermann R, Hayn M, et al. (2002). Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806–15.
  • Han M, Li N, Li FZ, et al. (2020). MiR-27b-3p exerts tumor suppressor effects in esophageal squamous cell carcinoma by targeting Nrf2. Hum Cell 33:641–51.
  • Han RY, Li YZ, Cao W. (2020). The overexpression of miRNA-212-5p inhibited the malignant proliferation of liver cancer cells HepG2 and the tumor formation in nude mice with transplanted tumor through down-regulating SOCS5. Transl Cancer Res TCR 9:3986–97.
  • Hartono AB, Lee SB. (2018). Abstract 2386: identification of SIK1 as a potential therapeutic target for desmoplastic small round cell tumor. Cancer Res 78:2386.
  • Hashemian SM, Pourhanifeh MH, Fadaei S, et al. (2020). Non-coding RNAs and exosomes: their role in the pathogenesis of sepsis. Mol Ther Nucleic Acids 21:51–74.
  • Hashimoto Y, Shiina M, Dasgupta Y, et al. (2020). Upregulation of miR-130b contributes to risk of poor prognosis and racial disparity in African-American prostate cancer. Cancer Prev Res (Phila). 12:585–98.
  • He YQ, Yang JX, Li HZ, et al. (2015). Exogenous spermine ameliorates high glucose-induced cardiomyocytic apoptosis via decreasing reactive oxygen species accumulation through inhibiting p38/JNK and JAK2 pathways. Int J Clin Exp Path 8:15537–49.
  • Hereng TH, Elgstoen KB, Eide L, et al. (2014). Serum albumin and HCO3- regulate separate pools of ATP in human spermatozoa. Hum Reprod 29:918–30.
  • Hsu SH, Wang B, Kota J, et al. (2012). Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122:2871–83.
  • Hsu SH, Yu B, Wang XM, et al. (2013). Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomedicine 9:1169–80.
  • Huang C, Liu J, Xu L, et al. (2019). MicroRNA-17 promotes cell proliferation and migration in human colorectal cancer by downregulating SIK1. Cancer Manag Res 11:3521–34.
  • Huang MM, He TF, Xing CE. (2016). MicroRNA-212-5p down-regulation suppresses colorectal cancer migration and invasion by up-regulating SMAD4. Int J Clin Exp Path 9:12323–9.
  • Huang Y, Luo FY. (2021). Elevated microRNA-130b-5p or silenced ELK1 inhibits self-renewal ability, proliferation, migration, and invasion abilities, and promotes apoptosis of cervical cancer stem cells. Iubmb Life 73:118–29.
  • Icard P, Wu ZR, Alifano M, et al. (2019). Gluconeogenesis of cancer cells is disrupted by citrate. Trends Cancer 5:265–6.
  • Inoue H, Hirasaki M, Kogashiwa Y, et al. (2021). Predicting the radiosensitivity of HPV-negative oropharyngeal squamous cell carcinoma using miR-130b. Acta Oto-Laryngol 141:640–5.
  • Jiang LL, Huang H, Qian YF, et al. (2020). miR-130b regulates gap junctional intercellular communication through connexin 43 in granulosa cells from patients with polycystic ovary syndrome. Mol Hum Reprod 26:576–84.
  • Jiang QF, Xing WQ, Cheng JH, et al. (2020). Long non-coding RNA TP73-AS1 promotes the development of lung cancer by targeting the miR-27b-3p/LAPTM4B axis. Onco Targets Ther 13:7019–31.
  • Jimenez-Morales S, Perez-Amado CJ, Langley E, et al. (2018). Overview of mitochondrial germline variants and mutations in human disease: focus on breast cancer. Int J Oncol 53:923–36.
  • Jones SF, Infante JR. (2015). Molecular pathways: fatty acid synthase. Clin Cancer Res 21:5434–8.
  • Jóźwiak P, Krześlak A, Pomorski L, et al. (2012). Expression of hypoxia-related glucose transporters GLUT1 and GLUT3 in benign, malignant and non-neoplastic thyroid lesions. Mol Med Rep 6:601–6.
  • Kalluri R, LeBleu VS. (2020). The biology, function, and biomedical applications of exosomes. Science 367:eaau6977.
  • Kang S, Tsai LT, Rosen ED. (2016). Nuclear mechanisms of insulin resistance. Trends Cell Biol 26:341–51.
  • Katagiri M, Karasawa H, Takagi K, et al. (2017). Hexokinase 2 in colorectal cancer: a potent prognostic factor associated with glycolysis, proliferation and migration. Histol Histopathol 32:351–60.
  • Kim D, Wu YW, Li QY, et al. (2021). Nanoparticle-mediated lipid metabolic reprogramming of T cells in tumor microenvironments for immunometabolic therapy. Nano-Micro Lett 13:31.
  • Kim Y, Kim H, Bang S, et al. (2021). MicroRNA-130b functions as an oncogene and is a predictive marker of poor prognosis in lung adenocarcinoma. Lab Invest 101:155–64.
  • Lasser C, Eldh M, Lotvall J. (2012). Isolation and characterization of RNA-containing exosomes. J Vis Exp 59:e3037.
  • Lee JH, Jang H, Lee SM, et al. (2015). ATP-citrate lyase regulates cellular senescence via an AMPK- and p53-dependent pathway. Febs J 282:361–71.
  • Leithner K, Hrzenjak A, Trotzmuller M, et al. (2015). PCK2 activation mediates an adaptive response to glucose depletion in lung cancer. Oncogene 34:1044–50.
  • Lepropre S, Kautbally S, Octave M, et al. (2018). AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood 132:1180–92.
  • Li AM, Wu J, Zhai AX, et al. (2019). HBV triggers APOBEC2 expression through miR‑122 regulation and affects the proliferation of liver cancer cells .Int J Oncol 55:1137–48.
  • Li DD, Liu Y, Gao W, et al. (2020). LncRNA HCG11 inhibits adipocyte differentiation in human adipose-derived mesenchymal stem cells by sponging miR-204-5p to upregulate SIRT1. Cell Transplant 29:963689720968090.
  • Li KY, Chen YH, Li A, et al. (2019). Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer 144:1486–95.
  • Li M, Guo XF. (2020). LINC01089 blocks the proliferation and metastasis of colorectal cancer cells via regulating miR-27b-3p/HOXA10 axis. Onco Targets Ther 13:8251–60.
  • Li TSC, Yawata T, Honke K. (2014). Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: For the potential targeted ovarian cancer gene therapy. Eur J Pharm Sci 52:48–61.
  • Liang XM, Zeng JP, Wang LX, et al. (2013). Histone demethylase retinoblastoma binding protein 2 is overexpressed in hepatocellular carcinoma and negatively regulated by hsa-miR-212. Plos One 8:e69784.
  • Lin JF, Zeng H, Zhao JQ. (2018). MiR-212-5p regulates the proliferation and apoptosis of AML cells through targeting FZD5. Eur Rev Med Pharmacol Sci 22:8415–22.
  • Liu C, Xie Y, Li X, et al. (2021). Folic acid/peptides modified PLGA-PEI-PEG polymeric vectors as efficient gene delivery vehicles: synthesis, characterization and their biological performance. Mol Biotechnol 63:63–79.
  • Liu SL, Wang H, Yang ZH, et al. (2005). Enhancement of cancer radiation therapy by use of adenovirus-mediated secretable glucose-regulated protein 94/gp96 expression. Cancer Res 65:9126–31.
  • Liu XJ, Xing CG. (2019). PDZRN4-mediated colon cancer cell proliferation and dissemination is regulated by miR-221-3p. Transl Cancer Res 8:1289–300. +.
  • Liu XN, Chen SH, Zhang LJ. (2020). Downregulated microRNA-130b-5p prevents lipid accumulation and insulin resistance in a murine model of nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 319:E34–E42.
  • Liu YH, Chen L, Gong ZC, et al. (2015). Lovastatin enhances adenovirus-mediated TRAIL induced apoptosis by depleting cholesterol of lipid rafts and affecting CAR and death receptor expression of prostate cancer cells. Oncotarget 6:3055–70.
  • Lu G, Luo H, Zhu X. (2020). Targeting the GRP78 pathway for cancer therapy. Front Med (Lausanne) 7:351.
  • Lu M, Qin XL, Zhou YJ, et al. (2020). LncRNA HOTAIR suppresses cell apoptosis, autophagy and induces cell proliferation in cholangiocarcinoma by modulating the miR-204-5p/HMGB1 axis. Biomed Pharmacother 130:110566.
  • Lu XB, Xia HL, Jiang JY, et al. (2020). MicroRNA-212 targets SIRT2 to influence lipogenesis in bovine mammary epithelial cell line. J Dairy Res 87:232–8.
  • Luan X, Sansanaphongpricha K, Myers I, et al. (2017). Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 38:754–63.
  • Ma C, Zu X, Liu K, et al. (2019). Knockdown of pyruvate kinase M inhibits Cell growth and migration by reducing NF-kB activity in triple-negative breast cancer cells. Mol Cells 42:628–36.
  • Ma SQ, Wang YC, Li Y, et al. (2020). LncRNA XIST promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by downregulating miR-27b-3p. J Biol Regul Homeost Agents 34:1993–2001.
  • Ma YB, Temkin SM, Hawkridge AM, et al. (2018). Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett 435:92–100.
  • Medes G, Thomas A, Weinhouse S. (1953). Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Research 13:27–9.
  • Menendez JA, Lupu R. (2017). Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets 21:1001–16.
  • Miao ZF, Xu H, Xu YY, et al. (2017). Diabetes mellitus and the risk of gastric cancer: a meta-analysis of cohort studies. Oncotarget 8:44881–92.
  • Min HY, Lee HY. (2018). Oncogene-driven metabolic alterations in cancer. Biomol Ther (Seoul) 26:45–56.
  • Montal ED, Dewi R, Bhalla K, et al. (2015). PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth. Mol Cell 60:571–83.
  • Moradi-Chaleshtori M, Shojaei S, Mohammadi-Yeganeh S, et al. (2021). Transfer of miRNA in tumor-derived exosomes suppresses breast tumor cell invasion and migration by inducing M1 polarization in macrophages. Life Sci 282:119800.
  • Mu HQ, He YH, Wang SB, et al. (2020). MiR-130b/TNF-α/NF-κB/VEGFA loop inhibits prostate cancer angiogenesis. Clin Transl Oncol 22:111–21.
  • Nazaret C, Heiske M, Thurley K, et al. (2009). Mitochondrial energetic metabolism: a simplified model of TCA cycle with ATP production. J Theor Biol 258:455–64.
  • Nedaeinia R, Manian M, Jazayeri MH, et al. (2017). Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther 24:48–56.
  • Ni LW, Xu JH, Zhao FL, et al. (2021). MiR-221-3p-mediated downregulation of MDM2 reverses the paclitaxel resistance of non-small cell lung cancer in vitro and in vivo. Eur J Pharmacol 899:174054.
  • Ni M, Zhang Y, Lee AS. (2011). Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J 434:181–8.
  • Nishida K, Shimozuru M, Okamatsu-Ogura Y, et al. (2021). Changes in liver microRNA expression and their possible regulatory role in energy metabolism-related genes in hibernating black bears. J Comp Physiol B 191:397–409.
  • O’Neal J, Clem A, Reynolds L, et al. (2016). Inhibition of 6-phosphofructo-2-kinase (PFKFB3) suppresses glucose metabolism and the growth of HER2+ breast cancer. Breast Cancer Res Treat 160:29–40.
  • Orlando UD, Castillo AF, Medrano MAR, et al. (2019). Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression. Biochem Pharmacol 159:52–63.
  • Pan SF, Yang XJ, Jia YM, et al. (2015). Intravenous injection of microvesicle-delivery miR-130b alleviates high-fat diet-induced obesity in C57BL/6 mice through translational repression of PPAR-gamma. J Biomed Sci 22:86.
  • Patra KC, Hay N. (2014). The pentose phosphate pathway and cancer. Trends Biochem Sci 39:347–54.
  • Pavlova NN, Thompson CB. (2016). The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47.
  • Payen VL, Mina E, Van Hee VF, et al. (2020). Monocarboxylate transporters in cancer. Mol Metab 33:48–66.
  • Pegtel DM, Gould SJ. (2019). Exosomes. Annu Rev Biochem 88:487–514.
  • Peng J, Hou F, Zhu W, et al. (2020). lncRNA NR2F1-AS1 regulates miR-17/SIK1 axis to suppress the invasion and migration of cervical squamous cell carcinoma cells. Reprod Sci 27:1534–9.
  • Pu HH, Zhang QY, Zhao CB, et al. (2015). Overexpression of G6PD is associated with high risks of recurrent metastasis and poor progression-free survival in primary breast carcinoma. World J Surg Onc 13:323.
  • Qian CL, Qiu WQ, Zhang J, et al. (2021). The long non-coding RNA MEG3 plays critical roles in the pathogenesis of cholesterol gallstone. PeerJ 9:e10803.
  • Qu Q, Zeng F, Liu X, et al. (2016). Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis 7:e2226.
  • Rohrig F, Schulze A. (2016). The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer 16:732–49.
  • Ross M, Ofri R. (2021). The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res 16:1751–9.
  • Safinya CR. (2004). Non-viral vectors for gene therapy and drug delivery - preface. CMC 11.
  • Samson AAS, Park S, Kim SY, et al. (2019). Liposomal co-delivery-based quantitative evaluation of chemosensitivity enhancement in breast cancer stem cells by knockdown of GRP78/CLU. J Liposome Res 29:44–52.
  • Sankar PL, Cho MK. (2015). Engineering values into genetic engineering: a proposed analytic framework for scientific social responsibility. Am J Bioeth 15:18–24.
  • Santos CR, Schulze A. (2012). Lipid metabolism in cancer. Febs J 279:2610–2623.
  • Seenappa V, Das B, Joshi MB, et al. (2016). Context dependent regulation of human phosphoenolpyruvate carboxykinase isoforms by DNA promoter methylation and RNA stability. J Cell Biochem 117:2506–20.
  • Shao-Pu T. (2010). An experimental comparing analysis research on the nano-vectors for drug delivery and for gene therapy. WSEAS Trans Biol Biomed 7:11–20.
  • Shen SJ, Song Y, Ren XY, et al. (2020). MicroRNA-27b-3p promotes tumor progression and metastasis by inhibiting peroxisome proliferator-activated receptor gamma in triple-negative breast cancer. Front Oncol 10:1371.
  • Shi XL, Li Y, Zhao LM, et al. (2019). Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment. Colloids Surf B Biointerfaces 173:599–606.
  • Shlomai G, Neel B, LeRoith D, et al. (2016). Type 2 diabetes mellitus and cancer: the role of pharmacotherapy. J Clin Oncol 34:4261–4269.
  • Silva M, Melo SA. (2015). Non-coding RNAs in exosomes: new players in cancer biology. Curr Genomics 16:295–303.
  • Song DF, Yin L, Wang C, et al. (2019). Adenovirus-mediated expression of SIK1 improves hepatic glucose and lipid metabolism in type 2 diabetes mellitus rats. Plos One 14:e0210930.
  • Stincone A, Prigione A, Cramer T, et al. (2015). The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963.
  • Stine ZE, Walton ZE, Altman BJ, et al. (2015). MYC, metabolism, and cancer. Cancer Discov 5:1024–1039.
  • Sun JL, Zhao LL, He K, et al. (2020). MiRNA-mRNA integration analysis reveals the regulatory roles of miRNAs in the metabolism of largemouth bass (Micropterus salmoides) livers during acute hypoxic stress. Aquaculture 526:735362.
  • Tao L, Wei LB, Liu YS, et al. (2017). Gen-27, a newly synthesized flavonoid, inhibits glycolysis and induces cell apoptosis via suppression of hexokinase II in human breast cancer cells. Biochem Pharmacol 125:12–25.
  • Thakral S, Ghoshal K. (2015). miR-122 is a Unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr Gene Ther 15:142–150.
  • Thorens B, Mueckler M. (2010). Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab 298:E141–145.
  • Tian F, Tang P, Sun ZL, et al. (2020). miR-210 in Exosomes derived from macrophages under high glucose promotes mouse diabetic obesity pathogenesis by suppressing NDUFA4 expression. J Diabet Res 2020:1–12.
  • Vander Heiden MG, Cantley LC, Thompson CB. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33.
  • Vincent EE, Sergushichev A, Griss T, et al. (2015). Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol Cell 60:195–207.
  • Vojtech L, Woo S, Hughes S, et al. (2014). Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 42:7290–304.
  • Wang C, Song DF, Fu JH, et al. (2020). SIK1 regulates CRTC2-mediated gluconeogenesis signaling pathway in human and mouse liver cells. Front Endocrinol 11:580.
  • Wang JY, Zhao LW, Peng XQ, et al. (2020). Evaluation of miR-130 family members as circulating biomarkers for the diagnosis of bladder cancer. J Clin Lab Anal 34:e23517.
  • Wang P, Liu XM, Shao Y, et al. (2017). MicroRNA-107-5p suppresses non-small cell lung cancer by directly targeting oncogene epidermal growth factor receptor. Oncotarget 8:57012–23.
  • Wang WW, Wang SS, Pan L. (2020). Identification of key differentially expressed mRNAs and microRNAs in non-small cell lung cancer using bioinformatics analysis. Exp Ther Med 20:3720–32.
  • Wang XB, Lu YL, Zhu L, et al. (2020). Inhibition of miR-27b regulates lipid metabolism in skeletal muscle of obese rats during hypoxic exercise by increasing PPAR gamma expression. Front Physiol 11:1090.
  • Wang XY, Wang K, Xiao J, et al. (2020). Neferine sensitized Taxol-resistant nasopharygeal carcinoma to Taxol by inhibiting EMT via downregulating miR-130b-5p. Biochem Biophys Res Commun 531:573–80.
  • Wang YC, Yao X, Ma M, et al. (2021). miR-130b inhibits proliferation and promotes differentiation in myocytes via targeting Sp1. J Mol Cell Biol 13:422–32.
  • Wang ZB, Jiang ZD, Zhou J, et al. (2020). circRNA RNF111 regulates the growth, migration and invasion of gastric cancer cells by binding to miR-27b-3p. Int J Mol Med 46:1873–85.
  • Wang ZX, Zhuang XM, Chen BL, et al. (2020). The role of miR-107 as a potential biomarker and cellular factor for acute aortic dissection. DNA Cell Biol 39:1895–906.
  • Wang ZY, Dong CF. (2019). Gluconeogenesis in cancer: function and regulation of PEPCK, FBPase, and G6Pase. Trends Cancer 5:30–45.
  • Wojciechowska J, Krajewski W, Bolanowski M, et al. (2016). Diabetes and cancer: a review of current knowledge. Exp Clin Endocrinol Diabetes 124:263–75.
  • Wu J, Liu TT, Sun LL, et al. (2020). Long noncoding RNA SNHG4 promotes renal cell carcinoma tumorigenesis and invasion by acting as ceRNA to sponge miR-204-5p and upregulate RUNX2. Cancer Cell Int 20:514.
  • Wu Z, Wu J, Zhao Q, et al. (2020). Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol 22:631–646.
  • Xu CF, Liu Y, Shen S, et al. (2015). Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials 51:1–11.
  • Yan JQ, Chen J, Zhang N, et al. (2020). Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J Mater Chem B 8:492–503.
  • Yan JQ, Zhang N, Zhang ZZ, et al. (2021). Redox-responsive polyethyleneimine/tetrahedron DNA/doxorubicin nanocomplexes for deep cell/tissue penetration to overcome multidrug resistance. J Control Release 329:36–49.
  • Yan JQ, Zhang ZZ, Zhan XH, et al. (2021). In situ injection of dual-delivery PEG based MMP-2 sensitive hydrogels for enhanced tumor penetration and chemo-immune combination therapy. Nanoscale 13:9577–89.
  • Yang BW, Chen Y, Shi JL. (2019). Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater 31:1802896.
  • Yang H, Zhong JT, Zhou SH, et al. (2019). Roles of GLUT-1 and HK-II expression in the biological behavior of head and neck cancer. Oncotarget 10:3066–83.
  • Yang S, Chen BN, Zhang BG, et al. (2020). miR-204-5p promotes apoptosis and inhibits migration of gastric cancer cells by targeting HER-2. Mol Med Rep 22:2645–54.
  • Yang XZ, Dou S, Sun TM, et al. (2011). Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release 156:203–11.
  • Yao SR, Yin Y, Jin GY, et al. (2020). Exosome-mediated delivery of miR-204-5p inhibits tumor growth and chemoresistance. Cancer Med 9:5989–98.
  • Ye T, Zhong LL, Ye XM, et al. (2021). miR-221-3p and miR-222-3p regulate the SOCS3/STAT3 signaling pathway to downregulate the expression of NIS and reduce radiosensitivity in thyroid cancer. Exp Ther Med 21:652.
  • Yin GQ, Zhang B, Li J. (2019). miR‑221‑3p promotes the cell growth of non‑small cell lung cancer by targeting p27.Mol Med Rep 20:604–612.
  • Yin Y, Zhang BB, Wang WL, et al. (2014). miR-204-5p inhibits proliferation and invasion and enhances chemotherapeutic sensitivity of colorectal cancer cells by downregulating RAB22A. Clin Cancer Res 20:6187–99.
  • Youssef EM, Elfiky AM, Soliman B, et al. (2020). Expression profiling and analysis of some miRNAs in subcutaneous white adipose tissue during development of obesity. Genes Nutr 15:8.
  • Yu TT, Cao RS, Li S, et al. (2015). MiR-130b plays an oncogenic role by repressing PTEN expression in esophageal squamous cell carcinoma cells. BMC Cancer 15:29.
  • Yun UJ, Lee JH, Koo KH, et al. (2013). Lipid raft modulation by Rp1 reverses multidrug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol 85:1441–53.
  • Zhang C, Zou Y, Dai DQ. (2019). Downregulation of microRNA-27b-3p via aberrant DNA methylation contributes to malignant behavior of gastric cancer cells by targeting GSPT1. Biomed Pharmacother 119:109417.
  • Zhang D, Xu X, Ye Q. (2021). Metabolism and immunity in breast cancer. Front Med 5:178–207.
  • Zhang HD, Wu XX, Sui ZL, et al. (2021). High-mobility group AT-hook 2 promotes growth and metastasis and is regulated by miR-204-5p in oesophageal squamous cell carcinoma. Eur J Clin Invest 51:e13563.
  • Zhang J, Hua ZC. (2004). Targeted gene silencing by small interfering RNA-based knock-down technology. Curr Pharm Biotechnol 5:1–7.
  • Zhang KX, Zhao Q, Li ZG, et al. (2020). Clinicopathological significances of cancer stem cell-associated HHEX expression in breast cancer. Front Cell Dev Biol 8:605744.
  • Zhang L, Yu DH. (2019). Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer 1871:455–68.
  • Zhang M, Cao M, Kong L, et al. (2020). MiR-204-5p promotes lipid synthesis in mammary epithelial cells by targeting SIRT1. Biochem Biophys Res Commun 533:1490–6.
  • Zhang XP, Yang HJ. (2020). Research progress on long non-coding RNAs and drug resistance of breast cancer. Clin Breast Cancer 20:275–82.
  • Zhang XY, He ZL, Xiang LQ, et al. (2019). Codelivery of GRP78 siRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug Des Devel Ther 13:1357–72.
  • Zhao XY, Fu JF, Du JL, et al. (2020). The role of D-3-phosphoglycerate dehydrogenase in cancer. Int J Biol Sci 16:1495–506.
  • Zhou X, Sena-Esteves M, Gao G. (2019). Construction of recombinant adenovirus genomes by direct cloning. Cold Spring Harb Protoc 2019:pdb.prot095521.