6,090
Views
48
CrossRef citations to date
0
Altmetric
Research Article

Recent advances in the local antibiotics delivery systems for management of osteomyelitis

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2392-2414 | Received 24 Aug 2021, Accepted 18 Oct 2021, Published online: 10 Nov 2021

References

  • Abdel-Salam FS, Elkheshen SA, Mahmoud AA, et al. (2020). In-situ forming chitosan implant-loaded with raloxifene hydrochloride and bioactive glass nanoparticles for treatment of bone injuries: Formulation and biological evaluation in animal model. Int J Pharm 580:119213.
  • Ahmed G, Ishaque B, Rickert M, Fölsch C. (2018). Allogeneic bone transplantation in hip revision surgery : indications and potential for reconstruction. Orthopade 47:52–66.
  • Ahola N, Veiranto M, Männistö N, et al. (2012). Processing and sustained in vitro release of rifampicin containing composites to enhance the treatment of osteomyelitis. Biomatter 2:213–25.
  • Álvarez A, Fernández L, Gutiérrez D, et al. (2019). Methicillin-resistant staphylococcus aureus in hospitals: Latest trends and treatments based on bacteriophages. J Clin Microbiol 57:e01006–019.
  • Anagnostakos K, Schröder K. (2012). Antibiotic-impregnated bone grafts in orthopaedic and trauma surgery: a systematic review of the literature. Int J Biomater 2012:538061.
  • Anugraha A, Hughes LD, Pillai A. (2019). A novel technique for fabricating antibiotic-coated intramedullary nails using an antibiotic-loaded calcium sulphate hydroxyapatite bio-composite, Cerament-V. J Surg Case Rep 2019:327.
  • Asri R, Harun W, Samykano M, et al. (2017). Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C 77:1261–74.
  • Beenken KE, Campbell MJ, Campbell MJ, et al. (2021). Evaluation of a bone filler scaffold for local antibiotic delivery to prevent Staphylococcus aureus infection in a contaminated bone defect. Sci Rep 11:10254.
  • Beenken KE, Smith JK, Skinner RA, et al. (2014). Chitosan coating to enhance the therapeutic efficacy of calcium sulfate-based antibiotic therapy in the treatment of chronic osteomyelitis. J Biomater Appl 29:514–23.
  • Berebichez-Fridman R, Montero-Olvera P, Gómez-García R, Berebichez-Fastlicht E. (2017). An intramedullary nail coated with antibiotic and growth factor nanoparticles: an individualized state-of-the-art treatment for chronic osteomyelitis with bone defects. Med Hypotheses 105:63–8.
  • Bharti A, Saroj UK, Kumar V, et al. (2016). A simple method for fashioning an antibiotic impregnated cemented rod for intramedullary placement in infected non-union of long bones. J Clin Orthop Trauma 7:171–6.
  • Bhattacharya R, Kundu B, Nandi SK, Basu D. (2013). Systematic approach to treat chronic osteomyelitis through localized drug delivery system: bench to bed side. Mat Sci Eng C 33:3986–93.
  • Bidossi A, Bottagisio M, Logoluso N, De Vecchi E. (2020). In vitro evaluation of gentamicin or vancomycin containing bone graft substitute in the prevention of orthopedic implant-related infections. IJMS 21:9250.
  • Boles LR, Awais R, Beenken KE, et al. (2018). Local delivery of amikacin and vancomycin from chitosan sponges prevent polymicrobial implant-associated biofilm. Mil Med 183:459–65.
  • Bose S, Roy M, Bandyopadhyay A. (2012). Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–54.
  • Calhoun JH, Manring MM. (2005). Adult osteomyelitis. Infect Dis Clin 19:765–86.
  • Calhoun JH, Manring M, Shirtliff M. 2009. Osteomyelitis of the long bones. Semin Plast Surg. 23:059–72.
  • Cao Z, Jiang D, Yan L, Wu J. (2016). In vitro and in vivo osteogenic activity of the novel vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) scaffold. J Biomater Appl 30:1566–77.
  • Cazzato RL, Buy X, Eker O, et al. (2014). Percutaneous long bone cementoplasty of the limbs: experience with fifty-one non-surgical patients. Eur Radiol 24:3059–68.
  • Chan C-W, Carson L, Smith GC, et al. (2017). Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering. Appl Surf Sci 404:67–81.
  • Chaudhari A, Vig K, Baganizi D, et al. (2016). Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. IJMS 17:1974.
  • Chen Y, Frith JE, Dehghan-Manshadi A, et al. (2017). Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 75:169–74.
  • Chihara S, Segreti J. (2010). Osteomyelitis. Dis Mon 56:5–31.
  • Choudhury M, Mohanty S, Nayak S. (2015). Effect of different solvents in solvent casting of porous PLA scaffolds—in biomedical and tissue engineering applications. J Biomater Tissue Eng 5:1–9.
  • Cicuéndez M, Doadrio JC, Hernández A, et al. (2018). Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomater 65:450–61.
  • Cierny G, Mader JT, Penninck JJ. (1985). A clinical staging system for adult osteomyelitis. Contemporary Orthopaedics 10:17–37.
  • Cierny G, Mader JT, Penninck JJ. (2003). The classic: a clinical staging system for adult osteomyelitis. Clin Orthop Relat Res 414:7–24.
  • Cobb LH, McCabe EM, Priddy LB. (2020). Therapeutics and delivery vehicles for local treatment of osteomyelitis. J Orthop Res 38:2091–2103.
  • Coelho CC, Sousa SR, Monteiro FJ. (2015). Heparinized nanohydroxyapatite/collagen granules for controlled release of vancomycin. J Biomed Mater Res A 103:3128–38.
  • Comeau P, Filiaggi M. (2017). A two-stage cold isostatic pressing and gelling approach for fabricating a therapeutically loaded amorphous calcium polyphosphate local delivery system. J Biomater Appl 32:126–36.
  • Cong Y, Quan C, Liu M, et al. (2015). Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. J Biomater Sci Polym Ed 26:629–43.
  • Conrad DA. (2010). Acute hematogenous osteomyelitis. Pediatr Rev 31:464–71.
  • Danhier F, Ansorena E, Silva JM, et al. (2012). PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–22.
  • David N, Nallaiyan R. (2018). Biologically anchored chitosan/gelatin-SrHAP scaffold fabricated on Titanium against chronic osteomyelitis infection. Int J Biol Macromol 110:206–14.
  • Di Martino A, Sittinger M, Risbud MV. (2005). Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–90.
  • Diaz-Gomez L, García-González CA, Wang J, et al. (2017). Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. Int J Pharm 527:115–25.
  • Dickson MN, Liang EI, Rodriguez LA, et al. (2015). Nanopatterned polymer surfaces with bactericidal properties. Biointerphases 10:021010.
  • Diefenbeck M, Schrader C, Gras F, et al. (2016). Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials 101:156–64.
  • Diu T, Faruqui N, Sjöström T, et al. (2014). Cicada-inspired cell-instructive nanopatterned arrays. Sci Rep 4:7122.
  • Dorati R, De Trizio A, Genta I, et al. (2017a). Gentamicin-loaded thermosetting hydrogel and moldable composite scaffold: formulation study and biologic evaluation. J Pharm Sci 106:1596–607.
  • Dorati R, DeTrizio A, Genta I, et al. (2016). An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery. Mater Sci Eng C 58:909–17.
  • Dorati R, DeTrizio A, Modena T, et al. (2017b). Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals 10:96.
  • Drago L, Romanò D, De Vecchi E, et al. (2013). Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: an in vitro and prospective clinical study. BMC Infect Dis 13:584.
  • Drampalos E, Mohammad HR, Kosmidis C, et al. (2018). Single stage treatment of diabetic calcaneal osteomyelitis with an absorbable gentamicin-loaded calcium sulphate/hydroxyapatite biocomposite: The Silo technique. Foot (Edinb) 34:40–4.
  • Dzyuba G, Reznik L, Erofeev S, Odarchenko D. (2016). Efficiency of local cement reinforcing antibacterial implants in surgical treatment of long bones chronic osteomyelitis. Khirurgiia 5:31–6.
  • El-Habashy SE, El-Kamel AH, Essawy MM, et al. (2021). Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration. Biomater Sci 9:4019–39.
  • Elkasabgy NA, Abdel-Salam FS, Mahmoud AA, et al. (2019). Long lasting in-situ forming implant loaded with raloxifene HCl: an injectable delivery system for treatment of bone injuries. Int J Pharm 571:118703.
  • Elkasabgy NA, Mahmoud AA. (2019). Fabrication strategies of scaffolds for delivering active ingredients for tissue engineering. AAPS PharmSciTech 20:256.
  • Elkasabgy NA, Mahmoud AA, Maged A. (2020). 3D printing: an appealing route for customized drug delivery systems. Int J Pharm 588:119732.
  • Elkheshen S, Mobarak D, Salah S, Essam T. (2013). Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of the formulation variables. J Pharm Res Opin 3:72–81.
  • Euba G, Murillo O, Fernandez-Sabe N, et al. (2009). Long-term follow-up trial of oral rifampin-cotrimoxazole combination versus intravenous cloxacillin in treatment of chronic staphylococcal osteomyelitis. Antimicrob Agents Chemother 53:2672–6.
  • Evans RP, Nelson CL. (1993). Gentamicin-impregnated polymethylmethacrylate beads compared with systemic antibiotic therapy in the treatment of chronic osteomyelitis. Clin Orthop Relat Res 295:37–42.
  • Fage SW, Muris J, Jakobsen SS, Thyssen JP. (2016). Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 74:323–45.
  • Fang B, Qiu P, Xia C, et al. (2021). Extracellular matrix scaffold crosslinked with vancomycin for multifunctional antibacterial bone infection therapy. Biomaterials 268:120603.
  • Feil J, Bohnet S, Neugebauer R, Rübenacker S. (1990). Bioresorbable collagen-gentamicin compound as local antibiotic therapy. Aktuelle Probl Chir Orthop 34:94–103.
  • Fölsch C, Bok J, Krombach G, et al. (2020). Influence of antibiotic pellets on pore size and shear stress resistance of impacted native and thermodisinfected cancellous bone: An in vitro femoral impaction bone grafting model. J Orthop 22:414–21.
  • Ford CA, Cassat JE. (2017). Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis. Expert Rev anti Infect Ther 15:851–60.
  • Fraimow HS. 2009. Systemic antimicrobial therapy in osteomyelitis. In Seminars in plastic surgery. Stuttgart: Thieme Medical Publishers, 90–9.
  • Freiberg S, Zhu X. (2004). Polymer microspheres for controlled drug release. Int J Pharm 282:1–18.
  • Frohbergh ME, Katsman A, Botta GP, et al. (2012). Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–78.
  • Gaudin A, Jacqueline C, Gautier H, et al. (2013). A delivery system of linezolid to enhance the MRSA osteomyelitis prognosis: in vivo experimental assessment. Eur J Clin Microbiol Infect Dis 32:195–8.
  • Ghosh S, Wu V, Pernal S, Uskoković V. (2016). Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced antimicrobial applications. ACS Appl Mater Interfaces 8:7691–708.
  • Giavaresi G, Minelli EB, Sartori M, et al. (2012). New PMMA-based composites for preparing spacer devices in prosthetic infections. J Mater Sci Mater Med 23:1247–57.
  • Gimeno M, Pinczowski P, Vázquez FJ, et al. (2013). Porous orthopedic steel implant as an antibiotic eluting device: prevention of post-surgical infection on an ovine model. Int J Pharm 452:166–72.
  • Ginebra M-P, Espanol M, Maazouz Y, et al. (2018). Bioceramics and bone healing. EFORT Open Rev 3:173–83.
  • Gogia JS, Meehan JP, Di Cesare PE, Jamali AA. (2009). Local antibiotic therapy in osteomyelitis. Semin Plast Surg 23:100–7.
  • Gulati K, Scimeca J-C, Ivanovski S, Verron E. (2021). Double-edged sword: therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discovery Today. doi:10.1016/j.drudis.2021.07.004
  • Han J, Zhao D, Li D, et al. (2018). Polymer-based nanomaterials and applications for vaccines and drugs. Polymers 10:31.
  • Harik NS, Smeltzer MS. (2010). Management of acute hematogenous osteomyelitis in children. Expert Rev anti Infect Ther 8:175–81.
  • Hassani Besheli N, Mottaghitalab F, Eslami M, et al. (2017). Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl Mater Interfaces 9:5128–38.
  • Hess U, Mikolajczyk G, Treccani L, et al. (2016). Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Mater Sci Eng C 67:542–53.
  • Høiby N, Ciofu O, Johansen HK, et al. (2011). The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65.
  • Howard‐Jones AR, Isaacs D. (2013). Systematic review of duration and choice of systemic antibiotic therapy for acute haematogenous bacterial osteomyelitis in children. J Paediatr Child Health 49:760–8.
  • Howell WR, Goulston C. (2011). Osteomyelitis: an update for hospitalists. Hosp Pract (1995) 39:153–60.
  • Hupa L. 2018. Composition-property relations of bioactive silicate glasses. In: Ylänen H, ed. Bioactive glasses. Cambridge: Woodhead Publishing, 2–4.
  • Inzana JA, Schwarz EM, Kates SL, Awad HA. (2016). Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials 81:58–71.
  • Inzana JA, Trombetta RP, Schwarz EM, et al. (2015). 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater 30:232–47.
  • Ipsen T, Jørgensen PS, Damholt V, Tørholm C. (1991). Gentamicin-collagen sponge for local applications. 10 cases of chronic osteomyelitis followed for 1 year. Acta Orthop Scand 62:592–4.
  • Islam KN, Ali ME, Bakar MZBA, et al. (2013). A novel catalytic method for the synthesis of spherical aragonite nanoparticles from cockle shells. Powder Technol 246:434–40.
  • Ivanova EP, Hasan J, Webb HK, et al. (2013). Bactericidal activity of black silicon. Nat Commun 4:2838.
  • Jeong, EJ, Lee JW, Yeon SJ, et al. (2012). Fabrication of nanopatterned surfaces for tissue engineering. In: 2012 International conference on biomedical engineering and biotechnology. Macao: Institute of Electrical and Electronics Engineers, 1030–3.
  • Jia W-T, Fu Q, Huang W-H, et al. (2015). Comparison of borate bioactive glass and calcium sulfate as implants for the local delivery of teicoplanin in the treatment of methicillin-resistant Staphylococcus aureus-induced osteomyelitis in a rabbit model. Antimicrob Agents Chemother 59:7571–80.
  • Jones Z, Brooks AE, Ferrell Z, et al. (2016). A resorbable antibiotic eluting bone void filler for periprosthetic joint infection prevention. J Biomed Mater Res B Appl Biomater 104:1632–42.
  • Kalita SJ, Bhardwaj A, Bhatt H, C E. (2007). Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 27:441–9.
  • Kammerlander C, Gebhard F, Meier C, et al. (2011). Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial. Injury 42:1484–90.
  • Kankilic B, Bilgic E, Korkusuz P, Korkusuz F. (2014). Vancomycin containing PLLA/β-TCP controls experimental osteomyelitis in vivo. J Orthop Surg Res 9:114.
  • Karakeçili A, Topuz B, Korpayev S, Erdek M. (2019). Metal-organic frameworks for on-demand pH controlled delivery of vancomycin from chitosan scaffolds. Mater Sci Eng C 105:110098.
  • Karr JC. (2011). Management in the wound-care center outpatient setting of a diabetic patient with forefoot osteomyelitis using Cerament Bone Void Filler impregnated with vancomycin: off-label use. J Am Podiatr Med Assoc 101:259–64.
  • Karr JC, Lauretta J. (2015). In vitro activity of calcium sulfate and hydroxyapatite antifungal disks loaded with amphotericin B or voriconazole in consideration for adjunctive osteomyelitis management. J Am Podiatr Med Assoc 105:104–10.
  • Kavanagh N, Ryan EJ, Widaa A, et al. (2018). Staphylococcal osteomyelitis: disease progression, treatment challenges, and future directions. Clin Microbiol Rev 31:e00084–00017.
  • Khatoon Z, McTiernan CD, Suuronen EJ, et al. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4:e01067.
  • Kim HW, Ryu J-i, Bak KH. (2011). The safety and efficacy of cadaveric allografts and titanium cage as a fusion substitutes in pyogenic osteomyelitis. J Korean Neurosurg Soc 50:348–56.
  • Kremers HM, Nwojo ME, Ransom JE, et al. (2015). Trends in the epidemiology of osteomyelitis: a population-based study, 1969 to 2009. J Bone Joint Surg 97:837–45.
  • Krishnan AG, Biswas R, Menon D, Nair MB. (2020). Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci 8:2653–65.
  • Krishnan AG, Jayaram L, Biswas R, Nair M. (2015). Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded gelatin-hydroxyapatite scaffolds as a local drug delivery system for osteomyelitis treatment. Tissue Eng Part A 21:1422–31.
  • Kumar P, Vinitha B, Fathima G. (2013). Bone grafts in dentistry. J Pharm Bioallied Sci 5:S125–S127.
  • Kundu B, Lemos A, Soundrapandian C, et al. (2010). Development of porous HAp and β-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system. J Mater Sci Mater Med 21:2955–69.
  • Kundu B, Nandi SK, Dasgupta S, et al. (2011). Macro-to-micro porous special bioactive glass and ceftriaxone-sulbactam composite drug delivery system for treatment of chronic osteomyelitis: an investigation through in vitro and in vivo animal trial. J Mater Sci Mater Med 22:705–20.
  • Lalidou F, Kolios G, Drosos G. (2014). Bone infections and bone graft substitutes for local antibiotic therapy. Surg Technol Int 24:353–62.
  • Le Ray A-M, Gautier H, Laty M-K, et al. (2005). In vitro and in vivo bactericidal activities of vancomycin dispersed in porous biodegradable poly(epsilon-caprolactone) microparticles. Antimicrob Agents Chemother 49:3025–7.
  • Lee JW, Ahn G, Kim JY, Cho D-W. (2010). Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. J Mater Sci Mater Med 21:3195–205.
  • Lee J-H, Baik J-M, Yu Y-S, et al. (2020). Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Sci Rep 10:1–8.
  • Lee J-Y, Choi B, Wu B, Lee M. (2013). Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 5:045003.
  • Lee JW, Kang KS, Lee SH, et al. (2011). Bone regeneration using a microstereolithography-produced customized poly (propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–52.
  • Lew K-S, Othman R, Ishikawa K, Yeoh F-Y. (2012). Macroporous bioceramics: a remarkable material for bone regeneration. J Biomater Appl 27:345–58.
  • Lew DP, Waldvogel FA. (2004). Osteomyelitis. Lancet 364:369–79.
  • Li X. (2016). Bactericidal mechanism of nanopatterned surfaces. Phys Chem Chem Phys 18:1311–6.
  • Lima DB, Almeida RD, Pasquali M, et al. (2018). Physical characterization and modeling of chitosan/PEG blends for injectable scaffolds. Carbohydr Polym 189:238–49.
  • Lin W-C, Yao C, Huang T-Y, et al. (2019). Long-term in vitro degradation behavior and biocompatibility of polycaprolactone/cobalt-substituted hydroxyapatite composite for bone tissue engineering. Dent Mater 35:751–62.
  • Lindfors N, Hyvönen P, Nyyssönen M, et al. (2010). Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone 47:212–8.
  • Liu C, Bayer A, Cosgrove SE, et al. (2011). Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–e55.
  • Liu D, He C, Liu Z, Xu W. (2017). Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits. IJN 12:5461–71.
  • Liu D, Liu Z, Zou J, et al. (2021). Synthesis and characterization of a hydroxyapatite-sodium alginate-chitosan scaffold for bone regeneration. Front Mater 8:69.
  • Long M, Rack H. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–39.
  • Luo S, Jiang T, Yang Y, et al. (2016). Combination therapy with vancomycin-loaded calcium sulfate and vancomycin-loaded PMMA in the treatment of chronic osteomyelitis. BMC Musculoskelet Disord 17:502.
  • Mahmoudian M, Ganji F. (2017). Vancomycin-loaded HPMC microparticles embedded within injectable thermosensitive chitosan hydrogels. Prog Biomater 6:49–56.
  • Maier GS, Roth KE, Andereya S, et al. (2013). In vitro elution characteristics of gentamicin and vancomycin from synthetic bone graft substitutes. Open Orthop J 7:624–9.
  • Malheiro VN, Caridade SG, Alves NM, Mano JF. (2010). New poly(epsilon-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater 6:418–28.
  • Mancuso E, Bretcanu OA, Marshall M, et al. (2017). Novel bioglasses for bone tissue repair and regeneration: Effect of glass design on sintering ability, ion release and biocompatibility. Mater Des 129:239–48.
  • Mauffrey C, Butler N, Hake ME. (2016). Fabrication of an interlocked antibiotic/cement-coated carbon fiber nail for the treatment of long bone osteomyelitis. J Orthop Trauma 30:S23–S24.
  • Maver T, Mastnak T, Mihelič M, et al. (2021). Clindamycin-based 3D-printed and electrospun coatings for treatment of implant-related infections. Materials 14:1464.
  • Melicherčík P, Jahoda D, Nyč O, et al. (2012). Bone grafts as vancomycin carriers in local therapy of resistant infections. Folia Microbiol (Praha) 57:459–62.
  • Metallidis S, Charokopos N, Nikolaidis J, et al. (2006). Penetration of moxifloxacin into sternal bone of patients undergoing routine cardiopulmonary bypass surgery. Int J Antimicrob Agents 28:428–32.
  • Meyer M. (2019). Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 18:24.
  • Miller CP, Chiodo CP. (2016). Autologous bone graft in foot and ankle surgery. Foot Ankle Clin 21:825–37.
  • Mills DK, Jammalamadaka U, Tappa K, Weisman J. (2018). Studies on the cytocompatibility, mechanical and antimicrobial properties of 3D printed poly(methyl methacrylate) beads. Bioact Mater 3:157–66.
  • Mobarak DH, Salah S, Elkheshen SA. (2014). Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of technique and process variables. Pharm Dev Technol 19:891–900.
  • Moeinzadeh S, Park Y, Lin S, Yang YP. (2021). In-situ stable injectable collagen-based hydrogels for cell and growth factor delivery. Materialia 15:100954.
  • Mohanty S, Kumar M, Murthy N. (2003). Use of antibiotic-loaded polymethyl methacrylate beads in the management of musculoskeletal sepsis-a retrospective study. J Orthop Surg (Hong Kong) 11:73–9.
  • Momodu II, Savaliya V. (2020). Osteomyelitis. Treasure Island (FL): StatPearls Publishing.
  • Morley R, Lopez F, Webb F. (2016). Calcium sulphate as a drug delivery system in a deep diabetic foot infection. The Foot 27:36–40.
  • Morsi NM, Shamma RN, Eladawy NO, Abdelkhalek AA. (2019). Risedronate-loaded macroporous gel foam enriched with nanohydroxyapatite: preparation, characterization, and osteogenic activity evaluation using Saos-2 cells. AAPS PharmSciTech 20:104.
  • Mostafa AA, El-Sayed MM, Mahmoud AA, Gamal-Eldeen AM. (2017). Bioactive/natural polymeric scaffolds loaded with ciprofloxacin for treatment of osteomyelitis. AAPS PharmSciTech 18:1056–69.
  • Nair BP, Gangadharan D, Mohan N, et al. (2015). Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering. Mater Sci Eng C 52:333–42.
  • Nandi SK, Mukherjee P, Roy S, et al. (2009). Local antibiotic delivery systems for the treatment of osteomyelitis–a review. Mater Sci Eng C 29:2478–85.
  • Narayan R, Agarwal T, Mishra D, et al. (2017). Ectopic vascularized bone formation by human mesenchymal stem cell microtissues in a biocomposite scaffold. Colloids Surf B 160:661–70.
  • Nikezić AVV, Bondžić AM, and Vasić VM. (2020). Drug delivery systems based on nanoparticles and related nanostructures. European Journal of Pharmaceutical Sciences 151:105412.
  • Nithya R, Sundaram NM. (2015). Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants. Int J Nanomed 10:119–27.
  • Noel SP, Courtney H, Bumgardner JD, Haggard WO. (2008). Chitosan films: a potential local drug delivery system for antibiotics. Clin Orthop Relat Res 466:1377–82.
  • Noor S, Gilson A, Kennedy K, et al. (2016). Pre-packing of cost effective antibiotic cement beads for the treatment of traumatic osteomyelitis in the developing world–an in-vitro study based in Cambodia. Injury 47:805–10.
  • Norambuena GA, Patel R, Karau M, et al. (2017). Antibacterial and biocompatible titanium-copper oxide coating may be a potential strategy to reduce periprosthetic infection: an in vitro study. Clin Orthop Relat Res 475:722–32.
  • Ogay V, Mun EA, Kudaibergen G, et al. (2020). Progress and prospects of polymer-based drug delivery systems for bone tissue regeneration. Polymers 12:2881.
  • Oh EJ, Oh SH, Lee IS, et al. (2016). Antibiotic-eluting hydrophilized PMMA bone cement with prolonged bactericidal effect for the treatment of osteomyelitis. J Biomater Appl 30:1534–44.
  • Oryan A, Eslaminejad MB, Kamali A, et al. (2018). Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat. Cell Tissue Res 374:63–81.
  • Oshima S, Sato T, Honda M, et al. (2020). Fabrication of gentamicin-loaded hydroxyapatite/collagen bone-like nanocomposite for anti-infection bone void fillers. IJMS 21:551.
  • Padrão T, Coelho CC, Costa P, et al. (2021). Combining local antibiotic delivery with heparinized nanohydroxyapatite/collagen bone substitute: a novel strategy for osteomyelitis treatment. Mater Sci Eng C 119:111329.
  • Parent M, Magnaudeix A, Delebassée S, et al. (2016). Hydroxyapatite microporous bioceramics as vancomycin reservoir: antibacterial efficiency and biocompatibility investigation. J Biomater Appl 31:488–98.
  • Park K-H, Greenwood-Quaintance KE, Schuetz AN, et al. (2017). Activity of tedizolid in methicillin-resistant Staphylococcus epidermidis experimental foreign body-associated osteomyelitis. Antimicrob Agents Chemother 61:e01644–01616.
  • Parra-Ruíz FJ, González-Gómez A, Fernández-Gutiérrez M, et al. (2017). Development of advanced biantibiotic loaded bone cement spacers for arthroplasty associated infections. Int J Pharm 522:11–20.
  • Patzakis MJ, Mazur K, Wilkins J, et al. (1993). Septopal beads and autogenous bone grafting for bone defects in patients with chronic osteomyelitis. Clin Orthop Relat Res 295:112–8.
  • Pawar V, Srivastava R. (2019). Chitosan-polycaprolactone blend sponges for management of chronic osteomyelitis: a preliminary characterization and in vitro evaluation. Int J Pharm 568:118553.
  • Peltola H, Pääkkönen M. (2014). Acute osteomyelitis in children. N Engl J Med 370:352–60.
  • Perez RA, Kim H-W, Ginebra M-P. (2012). Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng 3:2041731412439555.
  • Peters EJ, Lipsky BA. (2013). Diagnosis and management of infection in the diabetic foot. Med Clin North Am 97:911–46.
  • Phull MK, Eydmann T, Roxburgh J, et al. (2013). Novel macro-microporous gelatin scaffold fabricated by particulate leaching for soft tissue reconstruction with adipose-derived stem cells. J Mater Sci Mater Med 24:461–7.
  • Porter JR, Ruckh TT, Popat KC. (2009). Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25:1539–60.
  • Posadowska U, Brzychczy-Włoch M, Drożdż A, et al. (2016). Injectable hybrid delivery system composed of gellan gum, nanoparticles and gentamicin for the localized treatment of bone infections. Expert Opin Drug Deliv 13:613–20.
  • Posadowska U, Brzychczy-Włoch M, Pamuła E. (2015). Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment. Acta Bioeng Biomech 17:41–8.
  • Puga AM, Rey-Rico A, Magariños B, et al. (2012). Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomater 8:1507–18.
  • Qayoom I, Teotia AK, Panjla A, et al. (2020). Local and sustained delivery of rifampicin from a bioactive ceramic carrier treats bone infection in rat tibia. ACS Infect Dis 6:2938–49.
  • Radwan NH, Nasr M, Ishak RA, et al. (2020). Chitosan-calcium phosphate composite scaffolds for control of post-operative osteomyelitis: fabrication, characterization, and in vitro-in vivo evaluation. Carbohydr Polym 244:116482.
  • Radwan NH, Nasr M, Ishak RA, Awad GA. (2021). Moxifloxacin-loaded in situ Synthesized Bioceramic/Poly (L-lactide-co-ε-caprolactone) Composite Scaffolds for Treatment of Osteomyelitis and Orthopedic regeneration. Int J Pharm 602:120662.
  • Rahaman MN, Bal BS, Huang W. (2014). Emerging developments in the use of bioactive glasses for treating infected prosthetic joints. Mater Sci Eng C 41:224–31.
  • Rahaman MN, Day DE, Bal BS, et al. (2011). Bioactive glass in tissue engineering. Acta Biomater 7:2355–73.
  • Raj RM, Priya P, Raj V. (2018). Gentamicin-loaded ceramic-biopolymer dual layer coatings on the Ti with improved bioactive and corrosion resistance properties for orthopedic applications. J Mech Behav Biomed Mater 82:299–309.
  • Rasyid HN, van der Mei HC, Frijlink HW, et al. (2009). Concepts for increasing gentamicin release from handmade bone cement beads. Acta Orthop 80:508–13.
  • Reizner W, Hunter JG, O'Malley NT, et al. (2014). A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur Cell Mater 27:196–212.
  • Rimmele T, Boselli E, Breilh D, et al. (2004). Diffusion of levofloxacin into bone and synovial tissues. J Antimicrob Chemother 53:533–5.
  • Roux KM, Cobb LH, Seitz MA, Priddy LB. (2021). Innovations in osteomyelitis research: A review of animal models. Animal Model Exp Med 4:59–70.
  • Rubin RJ, Harrington CA, Poon A, et al. (1999). The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg Infect Dis 5:9–17.
  • Rumian Ł, Tiainen H, Cibor U, et al. (2016). Ceramic scaffolds enriched with gentamicin loaded poly (lactide-co-glycolide) microparticles for prevention and treatment of bone tissue infections. Mater Sci Eng C 69:856–64.
  • Ryan EJ, Ryan AJ, González-Vázquez A, et al. (2019). Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials 197:405–16.
  • Sa M-W, Kim JY. (2015). Comparison analysis and fabrication of hollow shaft scaffolds using polymer deposition system. Tissue Eng Regen Med 12:46–52.
  • Sabzi E, Abbasi F, Ghaleh H. (2021). Interconnected porous nanofibrous gelatin scaffolds prepared via a combined thermally induced phase separation/particulate leaching method. J Biomater Sci Polym Ed 32:488–503.
  • Saidykhan L, Bakar MZBA, Rukayadi Y, et al. (2016). Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int J Nanomed 11:661–73.
  • Santoro M, Tatara AM, Mikos AG. (2014). Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release 190:210–8.
  • Sarigol-Calamak E, Hascicek C. (2018). Tissue scaffolds as a local drug delivery system for bone regeneration. In: Chun H, Park CH, Kwon K, Khang G. (Ed.), Cutting-edge enabling technologies for regenerative medicine. Advances in experimental medicine and biology, 1078. Singapore: Springer, 475–93.
  • Sarwar MS, Huang Q, Ghaffar A, et al. (2020). A Smart drug delivery system based on biodegradable chitosan/poly (allylamine hydrochloride) blend films. Pharmaceutics 12:131.
  • Sato K, Yazawa H, Ikuma D, et al. (2019). Osteomyelitis due to methicillin-resistant Staphylococcus aureus successfully treated by an oral combination of minocycline and trimethoprim–sulfamethoxazole. SAGE Open Med Case Rep 7:2050313X1984146–5.
  • Segreto FA, Beyer GA, Grieco P, et al. (2018). Vertebral osteomyelitis: a comparison of associated outcomes in early versus delayed surgical treatment. Int J Spine Surg 12:703–12.
  • Selhi HS, Mahindra P, Yamin M, et al. (2012). Outcome in patients with an infected nonunion of the long bones treated with a reinforced antibiotic bone cement rod. J Orthop Trauma 26:184–8.
  • Sengstock C, Lopian M, Motemani Y, et al. (2014). Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition. Nanotechnology 25:195101.
  • Senneville E, Nguyen S. (2013). Current pharmacotherapy options for osteomyelitis: convergences, divergences and lessons to be drawn. Expert Opin Pharmacother 14:723–34.
  • Seol Y-J, Kang T-Y, Cho D-W. (2012). Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter 8:1730–5.
  • Shamma RN, Elkasabgy NA, Mahmoud AA, et al. (2017). Design of novel injectable in-situ forming scaffolds for non-surgical treatment of periapical lesions: in-vitro and in-vivo evaluation. Int J Pharm 521:306–17.
  • Shamma RN, Sayed RH, Madry H, et al. (2021). Triblock copolymer bioinks in hydrogel 3D printing for regenerative medicine-a focus on PF127. Tissue Eng B Rev. doi:10.1089/ten.teb.2021.0026
  • Sharma S, Bano S, Ghosh AS, et al. (2016). Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomed Nanotechnol Biol Med 12:1193–204.
  • Shi M, Chen L, Wang Y, et al. (2018). Effect of low-frequency pulsed ultrasound on drug delivery, antibacterial efficacy, and bone cement degradation in vancomycin-loaded calcium phosphate cement. Med Sci Monit 24:797–802.
  • Shim J-H, Kim M-J, Park JY, et al. (2015). Three-dimensional printing of antibiotics-loaded poly-ε-caprolactone/poly (lactic-co-glycolic acid) scaffolds for treatment of chronic osteomyelitis. Tissue Eng Regen Med 12:283–93.
  • Shim J-H, Lee J-S, Kim JY. (2012). Fabrication of solid freeform fabrication based 3D scaffold and its in-vitro characteristic evaluation for bone tissue engineering. Tissue Eng Regen Med 9:A16–23.
  • Shipitsyna I, Osipova E, Ovchinnikov E, Leonchuk D. (2020). [Dependence of biofilm-forming ability on the antibiotic sensitivity of Pseudomonas aeruginosa clinical strains isolated from patients with chronic osteomyelitis.]. Klin Lab Diagn 65:37–41.
  • Siddiqui N, Asawa S, Birru B, et al. (2018). PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol 60:506–32.
  • Siemann U. 2005. Solvent cast technology–a versatile tool for thin film production. In: Scattering methods and the properties of polymer materials. Berlin/Heidelberg: Springer, 1–14.
  • Singh BN, Veeresh V, Mallick SP, et al. (2020). Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. Int J Biol Macromol 153:1–16.
  • Sjöström T, McNamara LE, Meek RD, et al. (2013). 2D and 3D nanopatterning of titanium for enhancing osteoinduction of stem cells at implant surfaces. Adv Healthc Mater 2:1285–93.
  • Song J, Leeuwenburgh SC. (2014). Sustained delivery of biomolecules from gelatin carriers for applications in bone regeneration. Ther Deliv 5:943–58.
  • Soundrapandian C, Basu D, Sa B, Datta S. (2011). Local drug delivery system for the treatment of osteomyelitis: in vitro evaluation. Drug Dev Ind Pharm 37:538–46.
  • Sreeja S, Muraleedharan C, Varma PH, Sailaja G. (2020). Surface-transformed osteoinductive polyethylene terephthalate scaffold as a dual system for bone tissue regeneration with localized antibiotic delivery. Mater Sci Eng C 109:110491.
  • Stevens MM. (2008). Biomaterials for bone tissue engineering. Mater Today 11:18–25.
  • Su Y, Su Q, Liu W, et al. (2012). Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater 8:763–71.
  • Sun X, Ma Z, Zhao X, et al. (2021). Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus. Bioact Mater 6:757–69.
  • Szewczyk A, Skwira A, Konopacka A, et al. (2021). Mesoporous silica-bioglass composite pellets as bone drug delivery system with mineralization potential. IJMS 22:4708.
  • Tamazawa G, Ito A, Miyai T, et al. (2011). Gatifloxacine-loaded PLGA and β-tricalcium phosphate composite for treating osteomyelitis. Dent Mater J 30:264–73.
  • Tan G, Tan Y, Ni G, et al. (2014). Controlled oxidative nanopatterning of microrough titanium surfaces for improving osteogenic activity. J Mater Sci Mater Med 25:1875–84.
  • Tao J, Zhang Y, Shen A, et al. (2020). Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis. Int J Nanomed 15:5855–71.
  • Teng X, Ren J, Gu S. (2007). Preparation and characterization of porous PDLLA/HA composite foams by supercritical carbon dioxide technology. J Biomed Mater Res B Appl Biomater 81:185–93.
  • Thanyaphoo S, Kaewsrichan J. (2012). Synthesis and evaluation of novel glass ceramics as drug delivery systems in osteomyelitis. J Pharm Sci 101:2870–82.
  • Thein E, Tafin U, Betrisey B, et al. (2013). In vitro activity of gentamicin-loaded bioabsorbable beads against different microorganisms. Materials (Basel) 6:3284–93.
  • Tîlmaciu C-M, Mathieu M, Lavigne J-P, et al. (2015). In vitro and in vivo characterization of antibacterial activity and biocompatibility: a study on silver-containing phosphonate monolayers on titanium. Acta Biomater 15:266–77.
  • Trombetta RP, Ninomiya MJ, El-Atawneh IM, et al. (2019). Calcium phosphate spacers for the local delivery of sitafloxacin and rifampin to treat orthopedic infections: efficacy and proof of concept in a mouse model of single-stage revision of device-associated osteomyelitis. Pharmaceutics 11:94.
  • Tsiolis P, Giamarellos-Bourboulis EJ, Mavrogenis AF, et al. (2011). Experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus treated with a polylactide carrier releasing linezolid. Surg Infect (Larchmt) 12:131–5.
  • Tucker LJ, Grant CS, Gautreaux MA, et al. (2021). Physicochemical and antimicrobial properties of thermosensitive chitosan hydrogel loaded with fosfomycin. Mar Drugs 19:144.
  • Turner TM, Urban RM, Gitelis S, et al. (2001). Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery: one institution’s experience. J Bone Joint Surg 83:8–18.
  • Ueng SW, Lee MS, Lin SS, et al. (2007). Development of a biodegradable alginate carrier system for antibiotics and bone cells. J Orthop Res 25:62–72.
  • Ueng SW, Lin S-S, Wang I-C, et al. (2016). Efficacy of vancomycin-releasing biodegradable poly(lactide-co-glycolide) antibiotics beads for treatment of experimental bone infection due to Staphylococcus aureus. J Orthop Surg Res 11:52.
  • Ueng SW, Yuan L-J, Lin S-S, et al. (2011). In vitro and in vivo analysis of a biodegradable poly (lactide-co-glycolide) copolymer capsule and collagen composite system for antibiotics and bone cells delivery. J Trauma Acute Care Surg 70:1503–9.
  • Uskokovic V. (2015). Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 32:1–59.
  • Variola F, Zalzal SF, Leduc A, et al. (2014). Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties. Int J Nanomed 9:2319–25.
  • Vergidis P, Rouse MS, Euba G, et al. (2011). Treatment with linezolid or vancomycin in combination with rifampin is effective in an animal model of methicillin-resistant Staphylococcus aureus foreign body osteomyelitis. Antimicrob Agents Chemother 55:1182–6.
  • Waeiss RA, Negrini TC, Arthur RA, Bottino MC. (2014). Antimicrobial effects of drug-containing electrospun matrices on osteomyelitis-associated pathogens. J Oral Maxillofac Surg 72:1310–9.
  • Waknis V, Jonnalagadda S. (2011). Novel poly-DL-lactide-polycaprolactone copolymer based flexible drug delivery system for sustained release of ciprofloxacin. Drug Deliv 18:236–45.
  • Walter G, Kemmerer M, Kappler C, Hoffmann R. (2012). Treatment algorithms for chronic osteomyelitis. Dtsch Arztebl Int 109:257–64.
  • Wan T, Stylios GK, Giannoudi M, Giannoudis PV. (2015). Investigating a new drug delivery nano composite membrane system based on PVA/PCL and PVA/HA (PEG) for the controlled release of biopharmaceuticals for bone infections. Injury 46:S39–S43.
  • Wang G, Luo W, Zhou Y, et al. (2021). Custom-made antibiotic cement-coated nail for the treatment of infected bone defect. BioMed Res Int 2021:1–12.
  • Wang Y, Wang X, Li H, et al. (2011). Assessing the character of the rhBMP-2- and vancomycin-loaded calcium sulphate composites in vitro and in vivo. Arch Orthop Trauma Surg 131:991–1001.
  • Wasupalli GK, Verma D. (2020). Injectable and thermosensitive nanofibrous hydrogel for bone tissue engineering. Mater Sci Eng C 107:110343.
  • Wei G, Ma PX. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–57.
  • Weinrauch PC, Bell C, Wilson L, et al. (2007). Shear properties of bilaminar polymethylmethacrylate cement mantles in revision hip joint arthroplasty. J Arthroplasty 22:394–403.
  • Wells CM, Beenken KE, Smeltzer MS, et al. (2018). Ciprofloxacin and rifampin dual antibiotic-loaded biopolymer chitosan sponge for bacterial inhibition. Mil Med 183:433–44.
  • Winkler H, Janata O, Berger C, et al. (2000). In vitro release of vancomycin and tobramycin from impregnated human and bovine bone grafts. J Antimicrob Chemother 46:423–8.
  • Wu W, Ye C, Zheng Q, et al. (2016). A therapeutic delivery system for chronic osteomyelitis via a multi-drug implant based on three-dimensional printing technology. J Biomater Appl 31:250–60.
  • Xing J, Hou T, Luobu B, et al. (2013). Anti-infection tissue engineering construct treating osteomyelitis in rabbit tibia. Tissue Eng Part A 19:255–63.
  • Xu H, Han D, Dong JS, et al. (2010). Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects. Int J Med Robotics Comput Assist Surg 6:66–72.
  • Yan L, Jiang D-M, Cao Z-D, et al. (2015). Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres. Drug Design Dev Ther 9:3665–76.
  • Yang H, Hao Y, Liu Q, et al. (2017). Preparation and in vitro study of hydrochloric norvancomycin encapsulated poly (d,l-lactide-co-glycolide, PLGA) microspheres for potential use in osteomyelitis. Artif Cells Nanomed Biotechnol 45:1326–30.
  • Zhang X, Jia W, Gu Y, et al. (2010). Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 31:5865–74.
  • Zhang Q, Jiang Y, Zhang Y, et al. (2013). Effect of porosity on long-term degradation of poly (ε-caprolactone) scaffolds and their cellular response. Polym Degrad Stab 98:209–18.
  • Zhang Y, Liang R-j, Xu J-j, et al. (2017). Efficient induction of antimicrobial activity with vancomycin nanoparticle-loaded poly(trimethylene carbonate) localized drug delivery system. Int J Nanomed 12:1201–14.
  • Zhang D, Liu W, Wu X-D, et al. (2019a). Efficacy of novel nano-hydroxyapatite/polyurethane composite scaffolds with silver phosphate particles in chronic osteomyelitis. J Mater Sci Mater Med 30:59.
  • Zhang P, Qin J, Zhang B, et al. (2019b). Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R Soc Open Sci 6:182102.
  • Zhang X, Song J, Klymov A, et al. (2018). Monitoring local delivery of vancomycin from gelatin nanospheres in zebrafish larvae. Int J Nanomed 13:5377–94.
  • Zhang T, Wei Q, Zhou H, et al. (2020). Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant Staphylococcus aureus bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model. Biomater Sci 8:3106–15.
  • Zhao L, Chu PK, Zhang Y, Wu Z. (2009). Antibacterial coatings on titanium implants. J Biomed Mater Res Part B 91:470–80.
  • Zhao X, Han Y, Zhu T, et al. (2019). Electrospun polylactide-Nano-hydroxyapatiteVancomycin composite scaffolds for advanced Osteomyelitis therapy. J Biomed Nanotechnol 15:1213–22.
  • Zhao Z, Wang G, Zhang Y, et al. (2020). The effect of calcium sulfate/calcium phosphate composite for the treatment of chronic osteomyelitis compared with calcium sulfate. Ann Palliat Med 9:1821–33.
  • Zhou J, Zhou X, Wang J, et al. (2018). Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 7:46–57.
  • Zimmerli W. (2014). Clinical presentation and treatment of orthopaedic implant-associated infection. J Intern Med 276:111–9.
  • Zimmerli W, Moser C. (2012). Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol 65:158–68.