1,556
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Layer-by-layer coated hybrid nanoparticles with pH-sensitivity for drug delivery to treat acute lung infection

, , , , , & show all
Pages 2460-2468 | Received 23 Aug 2021, Accepted 25 Oct 2021, Published online: 12 Nov 2021

References

  • Arias CA, Murray BE. (2015). A new antibiotic and the evolution of resistance. N Engl J Med 372:1168–70.
  • Aslam B, Wang W, Arshad MI, et al. (2018). Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–58.
  • Ayukekbong JA, Ntemgwa M, Atabe AN. (2017). The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 6:47.
  • Blaskovich MAT. (2018). The fight against antimicrobial resistance is confounded by a global increase in antibiotic usage. ACS Infect Dis 4:868–70.
  • Chen X, Guo R, Wang C, et al. (2021). On-demand pH-sensitive surface charge-switchable polymeric micelles for targeting Pseudomonas aeruginosa biofilms development. J Nanobiotechnology 19:99
  • Deng ZJ, Morton SW, Ben-Akiva E, et al. (2013). Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7:9571–84.
  • Deshmukh PK, Ramani KP, Singh SS, et al. (2013). Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: targeting and biosensory applications. J Control Release 166:294–306.
  • Dinarello CA. (2010). Anti-inflammatory agents: present and future. Cell 140:935–50.
  • Tacconelli F, Sifakis S, Harbarth R, et al. (2018). Surveillance for control of antimicrobial resistance. Lancet Infect Dis 18:e99–e106.
  • Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. (2016). Layer-by-layer-coated lyotropic liquid crystalline nanoparticles for active tumor targeting of rapamycin. Nanomedicine 11:2975–96.
  • Gupta A, Mumtaz S, Li C-H, et al. (2019). Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48:415–27.
  • Holmes AH, Moore LSP, Sundsfjord A, et al. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387:176–87.
  • Huang X, Liao W, Zhang G, et al. (2017). pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol)-b-PEG-b-(PAE-g-cholesterol) for anticancer drug delivery and controlled release. Int J Nanomedicine 12:2215–26.
  • Hussain S, Joo J, Kang J, et al. (2018). Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng 2:95–103.
  • Ilgin P, Ozay H, Ozay O. (2020). Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J Polym Res 27:251.
  • Jain D, Bar-Shalom D. (2014). Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 40:1576–84.
  • Kaczmarek JC, Patel AK, Kauffman KJ, et al. (2016). Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew Chem 128:14012–6.
  • Kavanagh KT. (2019). Control of MSSA and MRSA in the United States: protocols, policies, risk adjustment and excuses. Antimicrob Resist Infect Control 8:103.
  • Klein E, Smith DL, Laxminarayan R. (2007). Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States. Emerg Infect Dis 13:1840–6.
  • Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S. (2016). Effect of intestinal flora on protein expression of drug-metabolizing enzymes and transporters in the liver and kidney of germ-free and antibiotics-treated mice. Mol Pharm 13:2691–701.
  • Lee RE, Hurdle JG, Liu J, et al. (2014). Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nature Medicine 20:152–8.
  • Li J, Ma YJ, Wang Y, et al. (2018). Dual redox/pH-responsive hybrid polymer-lipid composites: Synthesis, preparation, characterization and application in drug delivery with enhanced therapeutic efficacy. Chem Eng J 341:450–61.
  • Liao S, Zhang Y, Pan X, et al. (2019). Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. IJN 14:1469–87.
  • Ling LL, Schneider T, Peoples AJ, et al. (2015). A new antibiotic kills pathogens without detectable resistance. Nature 517:455–9.
  • Ma Z, Li J, Bai Y, et al. (2020). A bacterial infection-microenvironment activated nanoplatform based on spiropyran-conjugated glycoclusters for imaging and eliminating of the biofilm. Chemical Engineering Journal 399:125787.
  • Mehta D, Malik AB. (2006). Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367.
  • Men W, Zhu P, Dong S, et al. (2020). Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy in vivo. Drug Deliv 27:180–90.
  • Mendy A, Vieira ER, Albatineh AN, Gasana J. (2016). Staphylococcus aureus colonization and long-term risk for death, United States. Emerg Infect Dis 22:1966–9.
  • Mensah LB, Morton SW, Li J, et al. (2019). Layer-by-layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinum-based drug resistance therapy in ovarian cancer. Bioeng Transl Med 4:e10131.
  • Molinaro R, Corbo C, Martinez JO, et al. (2016). Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat Mater 15:1037–46.
  • Morton SW, Poon Z, Hammond PT. (2013). The architecture and biological performance of drug-loaded LbL nanoparticles. Biomaterials 34:5328–35.
  • Prestinaci F, Pezzotti P, Pantosti A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109:309–18.
  • Radovic-Moreno AF, Lu TK, Puscasu VA, et al. (2012). Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6:4279–87.
  • Klevens MA, Morrison J, Nadle S, et al. (2007). Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–71.
  • Roberts DM. (2011). The relevance of drug clearance to antibiotic dosing in critically ill patients. Curr Pharm Biotechnol 12:2002–14.
  • Si Z, Hou Z, Vikhe YS, et al. (2021). Antimicrobial effect of a novel chitosan derivative and its synergistic effect with antibiotics. ACS Appl Mater Interfaces 13:3237–45.
  • Thanner S, Drissner D, Walsh F. (2016). Antimicrobial resistance in agriculture. mBio 7:e02227–e02215.
  • van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. (2017). The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 17:407–20.
  • Wade S, Williams M. (2019). Antibiotic side‐effects: from the anticipated to the bizarre. Prescriber 30:16–21.
  • Yang Y, Ding Y, Fan B, et al. (2020). Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis. J Control Release 321:463–74.
  • Zhang CY, Gao J, Wang Z. (2018). Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management. Adv Mater 30:1803618.
  • Zhang CY, Lin W, Gao J, et al. (2019). pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury. ACS Appl Mater Interfaces 11:16380–90.
  • Zhang CY, Xiong D, Sun Y, et al. (2014). Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery. Int J Nanomedicine 9:4923–33.