1,855
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Rapid and improved oral absorption of N-butylphthalide by sodium cholate-appended liposomes for efficient ischemic stroke therapy

, , , , , , , & show all
Pages 2469-2479 | Received 03 Sep 2021, Accepted 25 Oct 2021, Published online: 12 Nov 2021

References

  • Aburahma M. (2016). Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv 23:1847–67.
  • Agrawal M, et al. (2020). Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release: J Control Release Soc 321:372–415.
  • Ahadian S, Finbloom JA, Mofidfar M, et al. (2020). Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 157:37–62.
  • Arafat M, Kirchhoefer C, Mikov M, et al. (2017). Nanosized liposomes containing bile salt: a vesicular nanocarrier for enhancing oral bioavailability of BCS class III drug. J Pharm Pharm Sci 20:305–18.
  • Belfiore L, Saunders DN, Ranson M, et al. (2018). Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: challenges and opportunities. J Control Release 277:1–13.
  • Chen D, Peng C, Xie X, et al. (2017). Low dose of anisodine hydrobromide induced neuroprotective effects in chronic cerebral hypoperfusion rats. CNS Neurol Disord Drug Targets 16:1111–9.
  • Chen X, Deng S, Lei Q, et al. (2020). miR-7-5p affects brain edema after intracerebral hemorrhage and its possible mechanism. Front Cell Dev Biol 8:598020.
  • Chen Y, Lu Y, Chen J, et al. (2009). Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 376:153–60.
  • Cona MM, Feng Y, Zhang J, et al. (2015). Sodium cholate, a solubilizing agent for the necrosis avid radioiodinated hypericin in rabbits with acute myocardial infarction. Drug Deliv 22:427–35.
  • Dai Y, Zhou R, Liu L, et al. (2013). Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine 8:1921–33.
  • Faustino C, Serafim C, Rijo P, Reis CP. (2016). Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin Drug Deliv 13:1133–48.
  • Feng H, Li C, Shu S, et al. (2019). A11, a novel diaryl acylhydrazone derivative, exerts neuroprotection against ischemic injury in vitro and in vivo. Acta Pharmacol Sin 40:160–9.
  • Filipczak N, Pan J, Yalamarty S, Torchilin V. (2020). Recent advancements in liposome technology. Adv Drug Deliv Rev 156:4–22.
  • Greimel A, Bernkop-Schnürch A, Del Curto M, D'Antonio M. (2007). Transport characteristics of a beta sheet breaker peptide across excised bovine nasal mucosa. Drug Dev Ind Pharm 33:71–7.
  • He H, Lu Y, Qi J, et al. (2019). Adapting liposomes for oral drug delivery. Acta Pharm Sin B 9:36–48.
  • Jensen G, Hodgson D. (2020). Opportunities and challenges in commercial pharmaceutical liposome applications. Adv Drug Deliv Rev 154-155:2–12.
  • Jeon D, Kim K-T, Baek M-J, et al. (2019). Preparation and evaluation of celecoxib-loaded proliposomes with high lipid content. Eur J Pharm Biopharm: official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 141:139–48.
  • Joshi S, Bawage S, Tiwari P, et al. (2019). Liposomes: a promising carrier for respiratory syncytial virus therapeutics. Expert Opin Drug Deliv 16:969–80.
  • Lei M, Ma G, Sha S, et al. (2019). Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic antitumor efficacy and reversion of multidrug resistance. Drug Deliv 26:262–72.
  • Li J, Xu S-F, Peng Y, et al. (2018). Conversion and pharmacokinetics profiles of a novel pro-drug of 3-n-butylphthalide, potassium 2-(1-hydroxypentyl)-benzoate, in rats and dogs. Acta Pharmacol Sin 39:275–85.
  • Li J, Yang Y, Lu L, et al. (2018). Preparation, characterization and systemic application of self-assembled hydroxyethyl starch nanoparticles-loaded flavonoid Morin for hyperuricemia therapy. Int J Nanomedicine 13:2129–41.
  • Li J, Yang Y, Ning E, et al. (2019). Mechanisms of poor oral bioavailability of flavonoid Morin in rats: from physicochemical to biopharmaceutical evaluations. Eur J Pharm Sci 128:290–8.
  • Li J, Yang Y, Wan D, et al. (2018). A novel phenolic propanediamine moiety-based lung-targeting therapy for asthma. Drug Deliv 25:1117–26.
  • Li X, Wang X, Miao L, et al. (2021). Design, synthesis, and neuroprotective effects of novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opened derivatives. Biochem Biophys Res Commun 556:99–105.
  • Liu X, Liu R, Fu D, et al. (2021). Dl-3-n-butylphthalide inhibits neuroinflammation by stimulating foxp3 and Ki-67 in an ischemic stroke model. Aging (Albany NY) 13:3763–78.
  • Macierzanka A, Torcello-Gómez A, Jungnickel C, Maldonado-Valderrama J. (2019). Bile salts in digestion and transport of lipids. Adv Colloid Interface Sci 274:102045.
  • Maswal M, Dar AA. (2013). Mixed micelles of sodium cholate and Brij30: Their rheological behaviour and capability towards solubilization and stabilization of rifampicin. Colloids Surf, A 436:704–13.
  • Moretti A, Ferrari F, Villa R. (2015). Pharmacological therapy of acute ischaemic stroke: Achievements and problems. Pharmacol Ther 153:79–89.
  • Neuwelt E, Abbott NJ, Abrey L, et al. (2008). Strategies to advance translational research into brain barriers. Lancet Neurol 7:84–96.
  • Niu M, Tan Y, Guan P, et al. (2014). Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study. Int J Pharm 460:119–30.
  • Raidal S, Edwards S. (2008). Pharmacokinetics of potassium bromide in adult horses. Aust Vet J 86:187–93.
  • Shi J, Yu W, Xu L, et al. (2020). Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxygen regulating. Nano Lett 20:780–9.
  • Silva GS, Schwamm LH. (2021). Advances in stroke: digital health. Stroke 52:351–5.[
  • Thakur R, Das A, Chakraborty A. (2012). Photophysical and photodynamical study of ellipticine: an anticancer drug molecule in bile salt modulated in vitro created liposome. Phys Chem Chem Phys 14:15369–78.
  • Wang B-N, Wu C-B, Chen Z-M, et al. (2021). DL-3-n-butylphthalide ameliorates diabetes-associated cognitive decline by enhancing PI3K/Akt signaling and suppressing oxidative stress. Acta Pharmacol Sin 42:347–60.
  • Wang M, Feng Y, Yuan Y, et al. (2020). Use of l-3-n-Butylphthalide within 24 h after intravenous thrombolysis for acute cerebral infarction. Complement Ther Med 52:102442.
  • Wang M, Zhang Q-y, Hua W-y, et al. (2015). Pharmacokinetics, safety and tolerability of L-3-n-butylphthalide tablet after single and multiple oral administrations in healthy Chinese volunteers. Braz J Pharm Sci 51:525–31.
  • Wang X, Wang L, Sheng X, et al. (2014). Design, synthesis and biological evaluation of hydrogen sulfide releasing derivatives of 3-n-butylphthalide as potential antiplatelet and antithrombotic agents. Org Biomol Chem 12:5995–6004.
  • Xiang H, Zhang Q, Han Y, et al. (2021). Novel brain-targeting 3-n-butylphthalide prodrugs for ischemic stroke treatment. J Control Release 335:498–514.
  • Yang G, Zhao Y, Zhang Y, et al. (2015). Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo. Int J Nanomedicine 10:6633–44.
  • Ye Z. (2004). Pharmacokinetic studies of butylphthalide soft capsules in humans. Peking Union Medical College
  • Zhang C, Zhao S, Zang Y, et al. (2017). The efficacy and safety of Dl-3n-butylphthalide on progressive cerebral infarction: a randomized controlled STROBE study. Medicine 96:e7257.
  • Zhang J, et al. (2011). Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with Morin-phospholipid complex. Int J Nanomed 6:3405–14.
  • Zhou Z, Lu J, Liu W-W, et al. (2018). Advances in stroke pharmacology. Pharmacol Ther 191:23–42.