2,140
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Targeted delivery by pH-responsive mPEG-S-PBLG micelles significantly enhances the anti-tumor efficacy of doxorubicin with reduced cardiotoxicity

, , , , &
Pages 2495-2509 | Received 09 Sep 2021, Accepted 08 Nov 2021, Published online: 29 Nov 2021

References

  • Alyane M, Barratt G, Lahouel M. (2016). Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells. Saudi Pharm J 24:165–75.
  • Chen K, Cai H, Zhang H, et al. (2019). Stimuli-responsive polymer–doxorubicin conjugate: antitumor mechanism and potential as nano-prodrug. Acta Biomater 84:339–55.
  • Chen K, Chen Q, Wang K, et al. (2016). Synthesis and characterization of a PAMAM-OH derivative containing an acid-labile β-thiopropionate bond for gene delivery. Int J Pharm 509:314–27.
  • Dan K, Ghosh S. (2013). One-pot synthesis of an acid-labile amphiphilic triblock copolymer and its pH-responsive vesicular assembly. Angew Chem Int Ed Engl 52:7300–5.
  • Duan Z, Cai H, Zhang H, et al. (2018). PEGylated multistimuli-responsive dendritic prodrug-based nanoscale system for enhanced anticancer activity. ACS Appl Mater Interfaces 10:35770–83.
  • Fang Y, Wang H, Dou HJ, et al. (2018). Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity. Int J Nanomedicine 13:5673–83.
  • Finbloom JA, Sousa F, Stevens MM, Desai TA. (2020). Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 167:89–108.
  • Gannimani R, Walvekar P, Naidu VR, et al. (2020). Acetal containing polymers as pH-responsive nano-drug delivery systems. J Control Release 328:736–61.
  • Gonzalez-Henriquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J. (2017). Strategies to fabricate polypeptide-based structures via ring-opening polymerization of N-carboxyanhydrides. Polymers 9:551.
  • Hoyle CE, Bowman CN. (2010). Thiol-ene click chemistry. Angew Chem Int Ed Engl 49:1540–73.
  • Huang X, Liao W, Xie Z, et al. (2018). A pH-responsive prodrug delivery system self-assembled from acid-labile doxorubicin-conjugated amphiphilic pH-sensitive block copolymers. Mater Sci Eng C Mater Biol Appl 90:27–37.
  • Huber V, Camisaschi C, Berzi A, et al. (2017). Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol 43:74–89.
  • Hwang D, Ramsey JD, Kabanov AV. (2020). Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev 156:80–118.
  • Jia N, Li W, Liu D, et al. (2020). Tumor microenvironment stimuli-responsive nanoparticles for programmed anticancer drug delivery. Mol Pharm 17:1516–26.
  • Karimi M, Eslami M, Sahandi-Zangabad P, et al. (2016). pH-sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:696–716.
  • Ke X, Ng VW, Ono RJ, et al. (2014). Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. J Control Release 193:9–26.
  • Kim JO, Kabanov AV, Bronich TK. (2009). Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J Control Release 138:197–204.
  • Kooijmans SAA, Fliervoet LAL, van der Meel R, et al. (2016). PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release 224:77–85.
  • Krasznai DJ, McKenna TFL, Cunningham MF, et al. (2012). Polysaccharide-stabilized core cross-linked polymer micelle analogues. Polym Chem 3:992–1001.
  • Li L, Knickelbein K, Zhang L, et al. (2015). Amphiphilic sugar poly(orthoesters) as pH-responsive nanoscopic assemblies for acidity-enhanced drug delivery and cell killing. Chem Commun 51:13078–81.
  • Li Y, Xiao K, Luo J, et al. (2010). A novel size-tunable nanocarrier system for targeted anticancer drug delivery. J Control Release 144:314–23.
  • Lu H, Zhou Q, He J, et al. (2020). Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther 5:213.
  • Lu Y, Zhang E, Yang J, Cao Z. (2018). Strategies to improve micelle stability for drug delivery. Nano Res 11:4985–98.
  • Luo Q, Li X, Wang Y, et al. (2020). A biodegradable CO2-based polymeric antitumor nanodrug via a one-pot surfactant- and solvent-free miniemulsion preparation. Biomater Sci 8:2234–44.
  • Lv S, Kim H, Song Z, et al. (2020). Unimolecular polypeptide micelles via ultrafast polymerization of N-carboxyanhydrides. J Am Chem Soc 142:8570–4.
  • Maacha S, Bhat AA, Jimenez L, et al. (2019). Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 18:55.
  • Mai Y, Eisenberg A. (2012). Self-assembly of block copolymers. Chem Soc Rev 41:5969–85.
  • Nguyen M, Stigliani JL, Bijani C, et al. (2018). Ionic polypeptide polymers with unusual β-sheet stability. Biomacromolecules 19:4068–74.
  • Pramanik P, Halder D, Jana SS, Ghosh S. (2016). pH-triggered sustained drug delivery from a polymer micelle having the β-thiopropionate linkage. Macromol Rapid Commun 37:1499–506.
  • Qiu L, Liu Q, Hong CY, Pan CY. (2016). Unimolecular micelles of camptothecin-bonded hyperbranched star copolymers viaβ-thiopropionate linkage: synthesis and drug delivery. J Mater Chem B 4:141–51.
  • Quail DF, Joyce JA. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–37.
  • Schoenmakers RG, van de Wetering P, Elbert DL, Hubbell JA. (2004). The effect of the linker on the hydrolysis rate of drug-linked ester bonds. J Control Release 95:291–300.
  • Shim MS, Kwon YJ. (2012). Ketalized poly(amino ester) for stimuli-responsive and biocompatible gene delivery. Polym Chem 3:2570.
  • Sonawane SJ, Kalhapure RS, Govender T. (2017). Hydrazone linkages in pH responsive drug delivery systems. Eur J Pharm Sci 99:45–65.
  • Tu C, Zhu L, Qiu F, et al. (2013). Facile PEGylation of Boltorn® H40 for pH-responsive drug carriers. Polymer 54:2020–7.
  • Wang Y, Huang D, Wang X, et al. (2019). Fabrication of zwitterionic and pH-responsive polyacetal dendrimers for anticancer drug delivery. Biomater Sci 7:3238–48.
  • Wei X, Luo Q, Sun L, et al. (2016). Enzyme- and pH-sensitive branched polymer–doxorubicin conjugate-based nanoscale drug delivery system for cancer therapy. ACS Appl Mater Interfaces 8:11765–78.
  • Wu Q, Zhou L, Zhang D, et al. (2011). Synthesis and characterization of biodegradable poly(ε-caprolactone)/poly(γ-benzyl l-glutamate) block copolymer. Polym Bull 67:1227–36.
  • Wu T, Dai Y. (2017). Tumor microenvironment and therapeutic response. Cancer Lett 387:61–8.
  • Wu W, Luo L, Wang Y, et al. (2018). Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 8:3038–58.
  • Xiao K, Luo J, Li Y, et al. (2011). PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. J Control Release 155:272–81.
  • Yan R, Liu X, Xiong J, et al. (2020). pH-responsive hyperbranched polypeptides based on Schiff bases as drug carriers for reducing toxicity of chemotherapy. RSC Adv 10:13889–99.
  • Zaman R, Islam RA, Ibnat N, et al. (2019). Current strategies in extending half-lives of therapeutic proteins. J Control Release 301:176–89.
  • Zhai Y, Zhou X, Zhang Z, et al. (2018). Design, synthesis, and characterization of Schiff base bond-linked pH-responsive doxorubicin prodrug based on functionalized mPEG-PCL for targeted cancer therapy. Polymers 10:1127.
  • Zhang B, Wan S, Peng X, et al. (2020). Human serum albumin-based doxorubicin prodrug nanoparticles with tumor pH-responsive aggregation-enhanced retention and reduced cardiotoxicity. J Mater Chem B 8:3939–48.
  • Zhang Y, Ren T, Gou J, et al. (2017). Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release 261:352–66.
  • Zhou Q, Zhang L, Yang T, Wu H. (2018). Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 13:2921–42.
  • Zhou Y, Zhou C, Zou Y, et al. (2020). Multi pH-sensitive polymer–drug conjugate mixed micelles for efficient co-delivery of doxorubicin and curcumin to synergistically suppress tumor metastasis. Biomater Sci 8:5029–46.
  • Zou Y, Zhang L, Yang L, et al. (2018). "Click" chemistry in polymeric scaffolds: bioactive materials for tissue engineering. J Control Release 273:160–79.