1,782
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Development and evaluation of luteolin loaded pegylated bilosome: optimization, in vitro characterization, and cytotoxicity study

, , , , , , , , & show all
Pages 2562-2573 | Received 30 Sep 2021, Accepted 08 Nov 2021, Published online: 06 Dec 2021

References

  • Abd-Elhakeem E, El-Nabarawi M, Shamma R. (2021). Lipid-based nano-formulation platform for eplerenone oral delivery as a potential treatment of chronic central serous chorioretinopathy: in-vitro optimization and ex-vivo assessment. Drug Deliv 28:642–54.
  • AbouSamra MM, Salama AH. (2017). Enhancement of the topical tolnaftate delivery for the treatment of tinea pedis via provesicular gel systems. J Liposome Res 27:324–34.
  • Aburahma MH. (2016). Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv 23:1847–67.
  • Adamczak A, Ożarowski M, Karpiński TM. (2019). Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J Clin Med 9:109.
  • Ahmed TA. (2020). Development of rosuvastatin flexible lipid-based nanoparticles: promising nanocarriers for improving intestinal cells cytotoxicity. BMC Pharmacol Toxicol 21:1–12.
  • Albash R, El-Nabarawi MA, Refai H, Abdelbary AA. (2019). Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: in-vitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine 14:6555–74.
  • Alhakamy NA, Caruso G, Al-Rabia MW, et al. (2021). Piceatannol-loaded bilosome-stabilized zein protein exhibits enhanced cytostatic and apoptotic activities in lung cancer cells. Pharmaceutics 13:638.
  • Al-Mahallawi AM, Abdelbary AA, Aburahma MH. (2015). Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm 485:329–40.
  • Alshehri S, Imam SS, Altamimi MA, et al. (2020). Enhanced dissolution of luteolin by solid dispersion prepared by different methods: physicochemical characterization and antioxidant activity. ACS Omega 5:6461–71.
  • Ansari MJ, Alshetaili A, Aldayel IA, et al. (2020). Formulation, characterization, in vitro and in vivo evaluations of self-nanoemulsifying drug delivery system of luteolin. J Taibah Univ Sci 14:1386–401.
  • Ayob Z, Mohd Bohari SP, Abd Samad A, Jamil S. (2014). Cytotoxic activities against breast cancer cells of local Justicia gendarussa crude extracts. Evid Based Complement Alternat Med 2014:732980.
  • Bhalekar M, Upadhaya P, Madgulkar A. (2017). Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir. Appl Nanosci 7:47–57.
  • Boeing T, de Souza P, Speca S, et al. (2020). Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties. Br J Pharmacol 177:2393–408.
  • Chen Y, Lu Y, Chen J, et al. (2009). Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 376:153–60.
  • Dai Y, Xing H, Song F, et al. (2016). Biotin-conjugated multilayer poly [d,l-lactide-co-glycolide]-lecithin-polyethylene glycol nanoparticles for targeted delivery of doxorubicin. J Pharm Sci 105:2949–58.
  • Deng F, Bae YH. (2020). Bile acid transporter-mediated oral drug delivery. J Control Release 327:100–16.
  • Eichsteininger J, Kirisits K, Smoch C, et al. (2019). Structural insight into the in vitro anti-intravasative properties of flavonoids. Sci Pharm 87:23.
  • El-Sayed MM, Hussein AK, Sarhan HA, Mansour HF. (2017). Flurbiprofen-loaded niosomes-in-gel system improves the ocular bioavailability of flurbiprofen in the aqueous humor. Drug Dev Ind Pharm 43:902–10.
  • Esfahani MKM, Alavi SE, Akbarzadeh A, et al. (2014). Pegylation of nanoliposomal paclitaxel enhances its efficacy in breast cancer. Trop J Pharm Res 13:1195–8.
  • Ghaferi M, Asadollahzadeh MJ, Akbarzadeh A. (2020). Enhanced efficacy of PEGylated liposomal cisplatin: in vitro and in vivo evaluation. Int J Mol Sci 21:559.
  • Gilani SJ, Bin-Jumah M, Rizwanullah M, et al. (2021). Chitosan coated luteolin nanostructured lipid carriers: optimization, in vitro-ex vivo assessments and cytotoxicity study in breast cancer cells. Coatings 11:158.
  • Guan P, Lu Y, Qi J, et al. (2011). Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt. Int J Nanomedicine 6:965–74.
  • Guo Y, Liu Y, Zhang Z, et al. (2020). The antibacterial activity and mechanism of action of luteolin against Trueperella pyogenes. Infect Drug Resist 13:1697–711.
  • Hatami A, Heydarinasab A, Akbarzadehkhiyavi A, Shariati FP. (2020). In vitro co-delivery evaluation of PEGylated nano-liposome loaded by glycyrrhizic acid and cisplatin on cancer cell lines. J Nanoparticle Res 22.
  • Imran M, Rauf A, Abu-Izneid T, et al. (2019). Luteolin, a flavonoid, as an anticancer agent: a review. Biomed Pharmacother 112:108612.
  • Kamaruzman NI, Aziz NA, Poh CL, Chowdhury EH. (2019). Oncogenic signaling in tumorigenesis and applications of siRNA nanotherapeutics in breast cancer. Cancers 11:632.
  • Khalil RM, Abdelbary A, Kocova El-Arini S, et al. (2019). Evaluation of bilosomes as nanocarriers for transdermal delivery of tizanidine hydrochloride: in vitro and ex vivo optimization. J Liposome Res 29:171–82.
  • Khan J, Saraf S, Saraf S. (2016). Preparation and evaluation of luteolin–phospholipid complex as an effective drug delivery tool against GalN/LPS induced liver damage. Pharm Dev Technol 21:475–86.
  • Liang XJ, Chen C, Zhao Y, Wang PC. (2010). Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol 596:467–88.
  • Lin Y, Shi R, Wang X, Shen HM. (2008). Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets 8:634–46.
  • Mencherini T, Picerno P, Scesa C, Aquino R. (2007). Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. J Nat Prod 70:1889–94.
  • Nag OK, Awasthi V. (2013). Surface engineering of liposomes for stealth behavior. Pharmaceutics 5:542–69.
  • Nounou MM, El-Khordagui LK, Khalafallah NA, Khalil SA. (2006). In vitro release of hydrophilic and hydrophobic drugs from liposomal dispersions and gels. Acta Pharm 56:311–24.
  • Parashar P, Rana P, Dwivedi M, Saraf SA. (2019). Dextrose modified bilosomes for peroral delivery: improved therapeutic potential and stability of silymarin in diethylnitrosamine-induced hepatic carcinoma in rats. J Liposome Res 29:251–63.
  • Patel KK, Kumar P, Thakkar HP. (2012). Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel. AAPS PharmSciTech 13:1502–10.
  • Qian W, Fu Y, Liu M, et al. (2021). Mechanisms of action of luteolin against single- and dual-species of Escherichia coli and Enterobacter cloacae and its antibiofilm activities. Appl Biochem Biotechnol 193:1397–414.
  • Qian W, Liu M, Fu Y, et al. (2020). Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties. Microb Pathog 142:104056.
  • Raafat KM, El-Zahaby SA. (2020). Niosomes of active Fumaria officinalis phytochemicals: antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action. Chin Med 15:1–22.
  • Romana B, Hassan MM, Sonvico F, et al. (2020). A liposome–micelle-hybrid (LMH) oral delivery system for poorly water-soluble drugs: enhancing solubilisation and intestinal transport. Eur J Pharm Biopharm 154:338–47.
  • Sharma A, Jain N, Sareen R. (2013). Nanocarriers for diagnosis and targeting of breast cancer. Biomed Res Int 2013:960821.
  • Shinde P, Agraval H, Singh A, et al. (2019). Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy. J Drug Deliv Sci Technol 52:369–78.
  • Suk JS, Xu Q, Kim N, et al. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51.
  • Wu G, Li J, Yue J, et al. (2018). Liposome encapsulated luteolin showed enhanced antitumor efficacy to colorectal carcinoma. Mol Med Rep 17:2456–64.
  • Yang H, Liu Z, Song Y, Hu C. (2019). Hyaluronic acid-functionalized bilosomes for targeted delivery of tripterine to inflamed area with enhancive therapy on arthritis. Drug Deliv 26:820–30.
  • Yang T, Cui F, De Choi MK, et al. (2007). Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm 338:317–26.
  • Zafar A, Alruwaili NK, Imam SS, et al. (2021). Bioactive apigenin loaded oral nano bilosomes: formulation optimization to preclinical assessment. Saudi Pharm J 29:269–79.
  • Zarai Z, Boujelbene E, Ben Salem N, et al. (2013). Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum. LWT Food Sci Technol 50:634–41.
  • Zhang N, Zhang F, Xu S, et al. (2020). Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability. J Drug Deliv Sci Technol 58:101783.
  • Zhang Q, Li J, Wang C, et al. (2007). A gradient HPLC method for the quality control of chlorogenic acid, linarin and luteolin in flos chrysanthemi indici suppository. J Pharm Biomed Anal 43:753–7.