2,812
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Cepharanthine loaded nanoparticles coated with macrophage membranes for lung inflammation therapy

, , , , , , , & show all
Pages 2582-2593 | Received 30 Sep 2021, Accepted 15 Nov 2021, Published online: 06 Dec 2021

References

  • Ayele AG, Enyew EF, Kifle ZD. (2021). Roles of existing drug and drug targets for COVID-19 management. Metabol Open 11:100103.
  • Bardania H, Shojaosadati SA, Kobarfard F, et al. (2019). RGD-modified nano-liposomes encapsulated eptifibatide with proper hemocompatibility and cytotoxicity effect. Iran J Biotechnol 17:e2008.
  • Bender EA, Adorne MD, Colome LM, et al. (2012). Hemocompatibility of poly(ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm 426:271–9.
  • Bullard DC, Mobley JM, Justen IM, et al. (1999). Acceleration and increased severity of collagen-induced arthritis in P-selectin mutant mice. J Immunol 163:2844–9.
  • Cao H, Dan Z, He X, et al. (2016). Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 10:7738–48.
  • Deng Y, Wu W, Ye S, et al. (2017). Determination of cepharanthine in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Pharm Biol 55:1775–9.
  • Fan HH, Wang LQ, Liu WL, et al. (2020). Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J 133:1051–6.
  • Furusawa S, Wu J. (2007). The effects of biscoclaurine alkaloid cepharanthine on mammalian cells: implications for cancer, shock, and inflammatory diseases. Life Sci 80:1073–9.
  • Gao C, Chu X, Gao W, et al. (2020). Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J Nanobiotechnology 18:71.
  • Gao C, Wang Y, Sun J, et al. (2020). Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater 108:285–99.
  • Han Y, Chu X, Cui L, et al. (2020). Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv 27:502–18.
  • Han Y, Gao C, Wang H, et al. (2020). Macrophage membrane-coated nanocarriers Co-Modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer’s disease mice. Bioac Mater 6:529–42.
  • Hu C, Lei T, Wang Y, et al. (2020). Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials 255:120159.
  • Inoue K, Takano H, Yanagisawa R, et al. (2007). Effects of inhaled nanoparticles on acute lung injury induced by lipopolysaccharide in mice. Toxicology 238:99–110.
  • Kao MC, Yang CH, Chou WC, et al. (2015). Cepharanthine mitigates lung injury in lower limb ischemia-reperfusion. J Surg Res 199:647–56.
  • Kao MC, Yang CH, Sheu JR, et al. (2015). Cepharanthine mitigates pro-inflammatory cytokine response in lung injury induced by hemorrhagic shock/resuscitation in rats. Cytokine 76:442–8.
  • Kim DE, Min JS, Jang MS, et al. (2019). Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 Infection of MRC-5 human lung cells. Biomolecules 9:696.
  • Kumar V. (2020). Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol 11:1722.
  • Li Q, Cai T, Huang Y, et al. (2017). The preparation and evaluation of cepharanthine-nanostructured lipid carriers in vitro and in vivo. J Biomater Tissue Eng 7:848–57.
  • Li R, He Y, Zhu Y, et al. (2019). Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Lett 19:124–34.
  • Liu R, An Y, Jia W, et al. (2020). Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. J Control Release 321:589–601.
  • Liu J, Yang Y, Liu X, et al. (2021). Macrophage-biomimetic anti-inflammatory liposomes for homing and treating of aortic dissection. J Control Release 337:224–35.
  • Lucas R, Hadizamani Y, Gonzales J, et al. (2020). Impact of bacterial toxins in the lungs. Toxins 12:223.
  • Matthay MA, Ware LB, Zimmerman GA. (2012). The acute respiratory distress syndrome. J Clin Invest 122:2731–40.
  • McKee DL, Sternberg A, Stange U, et al. (2020). Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 157:104859.
  • Mehta D, Malik AB. (2006). Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367.
  • Meng QF, Rao L, Zan M, et al. (2018). Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology 29:134004.
  • Murakami K, Okajima K, Uchiba M. (2000). The prevention of lipopolysaccharide-induced pulmonary vascular injury by pretreatment with cepharanthine in rats. Am J Respir Crit Care Med 161:57–63.
  • Ou Z, Zhong H, Zhang L, et al. (2020). Macrophage membrane-coated nanoparticles alleviate hepatic ischemia-reperfusion injury caused by orthotopic liver transplantation by neutralizing endotoxin. Int J Nanomedicine 15:4125–38.
  • Rao L, He Z, Meng QF, et al. (2017). Effective cancer targeting and imaging using macrophage membrane-camouflaged upconversion nanoparticles. J Biomed Mater Res A 105:521–30.
  • Rao L, Wu L, Liu Z, et al. (2020). Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nat Commun 11:4909.
  • Rogosnitzky M, Okediji P, Koman I. (2020). Cepharanthine: a review of the antiviral potential of a Japanese-approved alopecia drug in COVID-19. Pharmacol Rep 72:1506–16.
  • Tang TT, Lv LL, Wang B, et al. (2019). Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: an efficient therapeutic strategy against renal inflammation and fibrosis. Theranostics 9:4740–55.
  • Thamphiwatana S, Angsantikul P, Escajadillo T, et al. (2017). Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc Natl Acad Sci USA 114:11488–93.
  • Uto T, Nishi Y, Toyama M, et al. (2011). Inhibitory effect of cepharanthine on dendritic cell activation and function. Int Immunopharmacol 11:1932–8.
  • Volin MV. (2005). Soluble adhesion molecules in the pathogenesis of rheumatoid arthritis. Curr Pharm Des 11:633–53.
  • Wang Z, Li J, Cho J, et al. (2014). Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol 9:204–10.
  • Wang Y, Zhang K, Li T, et al. (2021). Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics 11:164–80.
  • Wang P, Zhang L, Liao Y, et al. (2020). Effect of intratracheal instillation of ZnO nanoparticles on acute lung inflammation induced by lipopolysaccharides in mice. Toxicol Sci 173:373–86.
  • Worthen GS, Schwab B, 3rd, Elson EL, et al. (1989). Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science 245:183–6.
  • Xuan M, Shao J, Dai L, et al. (2016). Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl Mater Interfaces 8:9610–8.
  • Yao Q, Yao G, Wang H, et al. (2021). Aging erythrocyte membranes as biomimetic nanometer carriers of liver-targeting chromium poisoning treatment. Drug Deliv 28:1455–65.
  • Yu HH, Mi WN, Liu B, et al. (2016). In vitro and in vivo effect of paclitaxel and cepharanthine co-loaded polymeric nanoparticles in gastric cancer. J BUON 21:125–34.
  • Zhang Y, Cai K, Li C, et al. (2018). Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett 18:1908–15.
  • Zhang QZ, Dehaini D, Zhang Y, et al. (2018). Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 13:1182–90.
  • Zhang CY, Lin W, Gao J, et al. (2019). pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/Injury. ACS Appl Mater Interfaces 11:16380–90.
  • Zhang R, Wang X, Ni L, et al. (2020). COVID-19: melatonin as a potential adjuvant treatment. Life Sci 250:117583.
  • Zhang Q, Zhou J, Zhou J, et al. (2021). Lure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis. Nat Commun 12:4136.