2,470
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats

, , , , , , , , , , & show all
Pages 2548-2561 | Received 05 Oct 2021, Accepted 15 Nov 2021, Published online: 02 Dec 2021

References

  • Ahuja CS, Nori S, Tetreault L, et al. (2017a). Traumatic spinal cord injury-repair and regeneration. Neurosurgery 80:S9–S22.
  • Ahuja CS, Wilson JR, Nori S, et al. (2017b). Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018.
  • Ambrozaitis KV, Kontautas E, Spakauskas B, Vaitkaitis D. (2006). Pathophysiology of acute spinal cord injury. Medicina (Kaunas, Lithuania) 42:255–61.
  • Arioz BI, Tastan B, Tarakcioglu E, et al. (2019). Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 PATHWAY. Front Immunol 10:1511.
  • Arranz-Romera A, Davis BM, Bravo-Osuna I, et al. (2019). Simultaneous co-delivery of neuroprotective drugs from multi-loaded PLGA microspheres for the treatment of glaucoma. J Control Release 297:26–38.
  • David S, Kroner A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–99.
  • Dávila JL, d’Ávila MA. (2017). Laponite as a rheology modifier of alginate solutions: physical gelation and aging evolution. Carbohydr Polym 157:1–8.
  • Dong N, Zhu C, Jiang J, et al. (2020). Development of composite PLGA microspheres containing exenatide-encapsulated lecithin nanoparticles for sustained drug release. Asian J Pharm Sci 15:347–55.,
  • Dyondi D, Webster TJ, Banerjee R. (2013). A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int J Nanomed 8:47–59.
  • Elisseeff J, McIntosh W, Fu K, et al. (2001). Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 19:1098–104.
  • Hu CM, Fang RH, Wang KC, et al. (2015). Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–21.
  • Hu L, Zhang H, Song W. (2013). An overview of preparation and evaluation sustained-release injectable microspheres. J Microencapsul 30:369–82.
  • Hu Z, Ma C, Rong X, et al. (2018). Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus. ACS Appl Mater Interfaces 10:2377–90.
  • Jauhari A, Baranov SV, Suofu Y, et al. (2020). Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest 130:3124–36.
  • Jia Z, Zhu H, Li J, et al. (2012). Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 50:264–74.,
  • Jiang Q, Wang K, Zhang X, et al. (2020). Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small 16:e2001704.
  • Jin K, Luo Z, Zhang B, Pang Z. (2018). Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 8:23–33.
  • Karam JP, Muscari C, Sindji L, et al. (2014). Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering. J Control Release 192:82–94.
  • Karsy M, Hawryluk G. (2019). Modern medical management of spinal cord injury. Curr Neurol Neurosci Rep 19:65.
  • Kroll AV, Fang RH, Zhang L. (2017). Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem 28:23–32.
  • Li B, Feng XJ, Hu XY, et al. (2018). Effect of melatonin on attenuating the isoflurane-induced oxidative damage is related to PKCα/Nrf2 signaling pathway in developing rats. Brain Res Bull 143:9–18.
  • Luk BT, Zhang L. (2015). Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 220:600–7.
  • McDonald JW, Sadowsky C. (2002). Spinal-cord injury. Lancet (London, England) 359:417–25.
  • Milich LM, Ryan CB, Lee JK. (2019). The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathol 137:785–97.
  • Nižić L, Potaś J, Winnicka K, et al. (2020). Development, characterisation and nasal deposition of melatonin-loaded pectin/hypromellose microspheres. Eur J Pharm Sci 141:105115.
  • Oliva N, Conde J, Wang K, Artzi N. (2017). Designing hydrogels for on-demand therapy. Acc Chem Res 50:669–79.
  • Orr MB, Gensel JC. (2018). Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics 15:541–53.
  • Qin M, Du G, Sun X. (2020). Biomimetic cell-derived nanocarriers for modulating immune responses. Biomater Sci 8:530–43.
  • Rambhia KJ, Ma PX. (2015). Controlled drug release for tissue engineering. J Control Release 219:119–28.
  • Rao F, Yuan Z, Zhang D, et al. (2019). Small-molecule SB216763-loaded microspheres repair peripheral nerve injury in small gap tubulization. Front Neurosci 13:489.
  • Rateb EE, Amin SN, El-Tablawy N, et al. (2017). Effect of melatonin supplemented at the light or dark period on recovery of sciatic nerve injury in rats. EXCLI J 16:138–50.,
  • Rehman SU, Ikram M, Ullah N, et al. (2019). Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling. Cells 8:760.
  • Robinson R, Viviano SR, Criscione JM, et al. (2011). Nanospheres delivering the EGFR TKI AG1478 promote optic nerve regeneration: the role of size for intraocular drug delivery. ACS Nano 5:4392–400.,
  • Rodrigo MJ, Cardiel MJ, Fraile JM, et al. (2020). Brimonidine-LAPONITE® intravitreal formulation has an ocular hypotensive and neuroprotective effect throughout 6 months of follow-up in a glaucoma animal model. Biomater Sci 8:6246–60.
  • Das Neelam SS, Hussain K, Singh S, et al. (2019). Laponite-based nanomaterials for biomedical applications: a review. Curr Pharm Des 25:424–43.
  • Tomás H, Alves CS, Rodrigues J. (2018). Laponite®: a key nanoplatform for biomedical applications? Nanomedicine 14:2407–20.
  • Wang C, Gong Z, Huang X, et al. (2019). An injectable heparin-Laponite hydrogel bridge FGF4 for spinal cord injury by stabilizing microtubule and improving mitochondrial function. Theranostics 9:7016–32.
  • Wei X, Ying M, Dehaini D, et al. (2018). Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis. ACS Nano 12:109–16.
  • Yang J, Han Y, Lin J, et al. (2020). Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis. Small 16:e2004519.
  • Yang Z, Bao Y, Chen W, He Y. (2020). Melatonin exerts neuroprotective effects by attenuating astro- and microgliosis and suppressing inflammatory response following spinal cord injury. Neuropeptides 79:102002.
  • Yao C, Cao X, Yu B. (2021). Revascularization after traumatic spinal cord injury. Front Physiol 12:631500.
  • Yuan XC, Wang P, Li HW, et al. (2017). Effects of melatonin on spinal cord injury-induced oxidative damage in mice testis. Andrologia 49:e12692.
  • Zhai X, Ruan C, Ma Y, et al. (2018). 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Adv Sci (Weinh) 5:1700550.
  • Zhang R, Xie L, Wu H, et al. (2020). Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater 113:305–16.
  • Zhang W, Zhou G, Gao Y, et al. (2017). A sequential delivery system employing the synergism of EPO and NGF promotes sciatic nerve repair. Colloids Surf B Biointerfaces 159:327–36.
  • Zhuang H, Bu S, Hua L, et al. (2016). Gelatin-methacrylamide gel loaded with microspheres to deliver GDNF in bilayer collagen conduit promoting sciatic nerve growth. Int J Nanomed 11:1383–94.
  • Zou S, Wang B, Wang C, et al. (2020). Cell membrane-coated nanoparticles: research advances. Nanomedicine (Lond) 15:625–41.