2,210
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Fabrication and characterization of Agarwood extract-loaded nanocapsules and evaluation of their toxicity and anti-inflammatory activity on RAW 264.7 cells and in zebrafish embryos

, , , , , , , , & show all
Pages 2618-2633 | Received 08 Oct 2021, Accepted 22 Nov 2021, Published online: 13 Dec 2021

References

  • Abas F, Lajis NH, Israf DA, et al. (2006). Antioxidant and nitric oxide inhibition activities of selected Malay traditional vegetables. Food Chem 95:566–73.
  • Adam AZ, Lee SY, Mohamed R. (2017). Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: an emerging contemporary herbal drink. J Herb Med 10:37–44.
  • Aisha AFA, Malik A, Abdulmajid S, et al. (2015). Development of polymeric nanoparticles of Garcinia mangostana xanthones in Eudragit RL100/RS100 for anti-colon cancer drug delivery. J Nanomater 2015: 1–12.
  • Alafiatayo AA, Lai K, Syahida A, et al. (2019). Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish (Danio rerio). Evid Based Complement Alternat Med 2019:38072072019.
  • Alishah H, Pourseyedi S, Ebrahimipour SY, et al. (2017). Green synthesis of starch mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT assay against MCF-7 cell line. Rend Fis Acc Lincei 28:65–71.
  • Amora M, Cassano D, Pocoví-martínez S, et al. (2018). Biodistribution and biocompatibility of passion fruit-like nano-architectures in zebrafish. Nanotoxicology 12:914–22.
  • Armendáriz-barragán B, Zafar N, Badri W, et al. (2016). Plant extracts: from encapsulation to application. Expert Opin Drug Deliv 13:1165–75.
  • Badawi NM, Teaima MH, El-say KM, et al. (2018). Pomegranate extract-loaded solid lipid nanoparticles: design, optimization, and in vitro cytotoxicity study. IJN 13:1313–26.
  • Basnet RM, Guarienti M, Memo M. (2017). Zebrafish embryo as an in vivo model for behavioral and pharmacological characterization of methylxanthine drugs. IJMS 18:596.
  • Bennet D, Kang SC, Gang J, Kim S. (2014). Photoprotective effects of apple peel nanoparticles. Int J Nanomedicine 9:93–108.
  • Borges RS, Keita H, Ortiz BLS, et al. (2018). Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies. Inflammopharmacology 26:1057–80.
  • Brundo MV, Salvaggio A. (2018). Zebrafish or Danio rerio: a new model in nanotoxicology study. In: Recent advances in zebrafish researches. ,http://dx.doi.org/10.5772/intechopen.74834, 121–33.
  • Chakrabarty K, Kumar A, Menon V. (1994). Trade in Agarwood. New Delhi: WWF-India/Traffic-India.
  • Chakraborty C, Sharma AR, Sharma G, Lee SS. (2016). Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol 14:1–13.
  • Chung LY, Soo WK, Chan KY, et al. (2009). Lipoxygenase inhibiting activity of some Malaysian plants. Pharm Biol 47:1142–8.
  • Cismaru L, Popa M. (2010). Polymeric nanoparticles with biomedical applications. Rev Roum Chim 55:433–42.
  • Eissa MA, Hashim YZH-Y, El-Kersh DM, et al. (2020). Metabolite profiling of Aquilaria malaccensis leaf extract using liquid chromatography-Q-TOF-mass spectrometry and investigation of its potential. Processes 8:202.
  • Evensen L, Johansen PL, Koster G, et al. (2016). Zebrafish as a model system for characterization of nanoparticles against cancer. Nanoscale 8:862–77.
  • Fahmi H, Hashim Z, Tet W, et al. (2017). Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J Tradit Complement Med 7:452–65.
  • Fornaguera C, Solans C. (2018). Analytical methods to characterize and purify polymeric nanoparticles. Int J Polym Sci 2018:1–10.
  • Fürst R, Zündorf I. (2014). Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm 2014:146832.
  • Gasparrini M, Forbes-hernandez TY, Giampieri F, et al. (2017). Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food Chem Toxicol 102:1–10.
  • Gautam R, Jachak SM. (2009). recent developments in anti-inflammatory natural products. Med Res Rev 29:767–820.
  • Ghayempour S, Montazer M, Rad MM. (2016a). Simultaneous encapsulation and stabilization of Aloe vera extract on cotton fabric for wound dressing application. RSC Adv 6:111895–902.
  • Ghayempour S, Montazer M. (2016). A robust friendly nano-encapsulated plant extract in hydrogel Tragacanth gum on cotton fabric through one single step in-situ synthesis and fabrication. Cellulose 23:2561–72.
  • Ghayempour S, Montazer M. (2017). Tragacanth nanocapsules containing Chamomile extract prepared through sono-assisted W/O/W microemulsion and UV cured on cotton fabric. Carbohydr Polym 170:234–40.
  • Ghayempour S, Montazer M, Rad MM. (2015a). Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract. Int J Biol Macromol 81:514–20.
  • Ghayempour S, Montazer M, Rad MM. (2015b). Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties. Carbohydr Polym 136:232–41.
  • Ghayempour S, Montazer M, Rad MM. (2016b). Encapsulation of Aloe vera extract into natural Tragacanth gum as a novel green wound healing product. Int J Biol Macromol 93:344–9.
  • Giacalone G, Tsapis N, Mousnier L, et al. (2018). PLA-PEG nanoparticles improve the anti-inflammatory effect of rosiglitazone on macrophages by enhancing drug uptake compared to free Rosiglitazone. Materials 11:1845.
  • Hani N, Azarian MH, Torkamani AE, et al. (2016). Characterisation of gelatin nanoparticles encapsulated with Moringa oleifera bioactive extract. Int J Food Sci Technol 51:2327–37.
  • Hickey JW, Santos JL, Williford J, Mao H-Q. (2015). Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release 219:536–47.
  • Hosseini SM, Hemmati K, Ghaemy M. (2016). Synthesis of nanohydrogels based on tragacanth gum biopolymer and investigation of swelling and drug delivery. Int J Biol Macromol 82:806–15.
  • Hu Y-L, Qi W, Han F, et al. (2011). Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 6:3351–9.
  • Hwang J-H, Kim K-J, Ryu S-J, Lee B-Y. (2016). Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chem Biol Interact 248:1–7.
  • Islam MT, Streck L, Correia Jardim Paz MF, et al. (2016). Preparation of phytol-loaded nanoemulsion and screening for antioxidant capacity. Int Arch Med 9:1–15.
  • Izzany F, Bakar A, Fadzelly M, et al. (2018). A review of Malaysian medicinal plants with potential anti-inflammatory activity. Adv Pharm Sci 2018:1–13.
  • Jo NY. (2018). The effect of woogakseungmatang extract on NO production in LPS-stimulated RAW 264. 7 Cells. Korean J Acupunct 35:166–73.
  • Karabay AZ, Koç A, Özkan T, et al. (2012). Effects of glucosamine on LPS/IFN-γ induced RAW 264. 7 macrophage apoptosis. Ankara Üniversitesi Tıp Fakültesi Mecmuası 65:11–8.
  • Karimi E, Jaafar HZE, Ahmad S. (2013). Antifungal, anti-inflammatory and cytotoxicity activities of three varieties of Labisia pumila benth: from microwave obtained extracts. BMC Complement Altern Med 13:20–30.
  • Katmıs A, Fide S, Karaismailoglu S, Derman S. (2018). Synthesis and characterization methods of polymeric nanoparticles. Characterization and Application of Nanomaterials 1:1–9.
  • Kiani A, Shahbazi M, Asempour H. (2012). Hydrogel membranes based on gum Tragacanth with tunable structure and properties. I. Preparation method using Taguchi experimental design. J Appl Polym Sci 124:99–108.
  • Kim ES, Lee J, Lee HG. (2016). Nanoencapsulation of red ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. J Agric Food Chem 64:4765–71.
  • Kwon DH, Jeong JW, Choi EO, et al. (2017). Inhibitory effects on the production of inflammatory mediators and reactive oxygen species by Mori folium in lipopolysaccharide-stimulated macrophages and zebrafish. An Acad Bras Cienc 89:661–74.
  • Kwon MC, Choi WY, Seo YC, et al. (2012). Enhancement of the skin-protective activities of Centella asiatica L. urban by a nano-encapsulation process. J Biotechnol 157:100–6.
  • Lee E-H, Park H-J, Kim D-H, et al. (2019). Elicitor-treated extracts of Saururus chinensis inhibit the expression of inducible nitric oxide synthase and cyclooxygenase-2 enzyme expression in raw cells for suppression of inflammation. JABC 62:149–55.
  • Lee J-H, Ko J-Y, Kim E-A, et al. (2017). Identification and large isolation of an anti-inflammatory compound from an edible brown seaweed, Undariopsis peterseniana, and evaluation on its anti-inflammatory effect in in vitro and in vivo zebrafish. J Appl Phycol 29:1587–96.
  • Lee M, Kwon M, Choi J, et al. (2012). Anti-inflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J Agric Food Chem 60:9120–9.
  • Lee S, Ko C, Jee Y, et al. (2013). Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydr Polym 92:84–9.
  • Liao Y, Chiou M, Tsai J, et al. (2011). Resveratrol treatment attenuates the wound-induced inflammation in zebrafish larvae through the suppression of myeloperoxidase expression. J Food Drug Anal 19:167–73.
  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. (2010). Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–73.
  • Liyana N, Amalina N, Adila N, et al. (2018). Acute and sub-chronic toxicity study of Aquilaria malaccensis leaves extract in Sprague-Dawley rats. Chem Adv Mater 3:8–15.
  • Luca E, De Zaccaria GM, Hadhoud M, et al. (2015). ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos. Sci Rep 4:4898.
  • Majewski M, Majewski M, Kasica N, et al. (2017). Influence of fresh garlic (Allium sativum L.) juice on zebrafish (Danio rerio) embryos developmental effects. J Elem 22:475–86.
  • Mao CF, Zhang XR, Johnson A, et al. (2018). Modulation of diabetes mellitus-induced male rat reproductive dysfunction with micro-nanoencapsulated Echinacea purpurea ethanol extract. Biomed Res Int 2018:4237354.
  • Marrassini C, Peralta I, Anesini C. (2018). Comparative study of the polyphenol content-related anti-inflammatory and antioxidant activities of two Urera aurantiaca specimens from different geographical areas. Chin Med 13:22.
  • Mendes AN, Filgueiras L, alves Siqueira M, regina P, et al. (2017). Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly (methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells. Int J Nanomedicine 12:8363–73.
  • Mennen LI, Sapinho D, De Bree A, et al. (2004). Nutritional epidemiology — research communication consumption of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women 1. J Nutr 134:923–6.
  • Mohamad SF, Mohd Said F, Abdul Munaim MS, et al. (2019). Proximate composition, minerals contents, functional properties of Mastura variety jackfruit (Artocarpus heterophyllus) seeds and lethal effects of its crude extract on zebrafish (Danio rerio) embryos. Food Res 3:546–55.
  • Mohammadifar MA, Mohammad S, Kiumarsi A, Williams PA. (2006). Solution properties of targacanthin (water-soluble part of gum tragacanth exudate from Astragalus gossypinus). Int J Biol Macromol 38:31–9.
  • Nazarzadeh E, Makvandi P, Tay FR. (2019). Recent progress in the industrial and biomedical applications of tragacanth gum: a review. Carbohydr Polym 212:450–67.
  • Nikapitiya C, Dananjaya SHS, De Silva BCJ, et al. (2018). Chitosan nanoparticles: a positive immune response modulator as display in zebrafish larvae against Aeromonas hydrophila infection. Fish Shellfish Immunol 76:240–6.
  • Nur M, Vasiljevic T. (2018). Insulin inclusion into a Tragacanth hydrogel: an oral delivery system for insulin. Materials 11:79–14.
  • Okoli CO, Akah PA. (2004). Mechanisms of the anti-inflammatory activity of the leaf extracts of Culcasia scandens P. Beauv (Araceae). Pharmacol Biochem Behav 79:473–81.
  • Ong KJ, Zhao X, Thistle ME, et al. (2014). Mechanistic insights into the effect of nanoparticles on zebrafish hatch. Nanotoxicology 8:295–304.
  • Organization for Economic Co-operation and Development (OECD). Guidelines for Testing of Chemical-Fish Embryo Acute Toxicity (FET) Test No. 236, OECD Publishing, Paris, 2013.
  • Oskoueian E, Abdullah N, Saad WZ, et al. (2011). Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Jatropha curcas Linn. J Med Plants Res 5:49–57.
  • Pal SL, Jana U, Manna PK, et al. (2011). Nanoparticle: AN overview of preparation and characterization. J Appl Pharm Sci 1:228–34.
  • Pesic M, Greten FR. (2016). Inflammation and cancer: tissue regeneration gone awry. Curr Opin Cell Biol 43:55–61.
  • Ponrasu T, Ganeshkumar M, Suguna L. (2012). Annona squamosa in zebrafish (Danio rerio) embryo. J Pharm Res 5:277–9.
  • Pretsch E, Bühlmann P, Badertscher M. (2009). IR spectroscopy. In Structure determination of organic compounds. Springer.
  • Rao U M, Ahmad BA, Mohd KS. (2016). In vitro nitric oxide scavenging and anti inflammatory activities of different solvent extracts of various parts of Musa paradisiaca. MJAS 20:1191–202.
  • Riyajan SA, Nuim J. (2013). Interaction of green polymer blend of modified sodium alginate and carboxylmethyl cellulose encapsulation of turmeric extract. Int J Polym Sci 2013:1–10.
  • Medzhitov R. (2008). Origin and physiological roles of inflammation. Nature 454:428–35.
  • Santoriello C, Zon LI. (2012). Hooked! Modeling human disease in zebrafish. J Clin Invest 122:2337–43.
  • Schacke H, Docke W-D, Asadullah K. (2002). Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96:23–43.
  • Shaikh A, Kohale K, Ibrahim M, Khan M. (2019). Teratogenic effects of aqueous extract of Ficus glomerata leaf during embryonic development in zebrafish (Danio rerio). J Appl Pharm Sci 9:107–11.
  • Shanmugapriya P, Elansekaran S, Ramamurthy M, et al. (2019). Teratogenicity testing of Siddha formulation of Nilavembu Kudineer on zebrafish (Danio rerio) embryo. Asian J Pharm Clin Res 12:246–50.
  • Stecanella LA, Taveira SF, Marreto RN, et al. (2013). Development and characterization of PLGA nanocapsules of grandisin isolated from Virola surinamensis: in vitro release and cytotoxicity studies. Revista Brasileira de Farmacognosia [Braz J Pharmacog] 23:153–9.
  • Strasser M, Noriega P, Löbenberg R, et al. (2014). Antiulcerogenic potential activity of free and nanoencapsulated Passiflora serratodigitata L. extracts. BioMed Res Int 2014:1–7.
  • Suman TS, Gupta R. (2013). Development of herbal biodegradable polymeric nanoparticle from Clerodendrum infortunatum L. J Bionanosci 7:341–7.
  • Syahbirin G, Mumuh N, Mohamad K. (2017). Curcuminoid and toxicity levels of ethanol extract of Javanese ginger (Curcuma Xanthorrhiza) on Brine shrimp (Artemia Salina) larvae and zebrafish (Danio Rerio) embryos. Asian J Pharm Clin Res 10:169–73.
  • Thanh C, Loan T, Hong T, et al. (2021). Sesquiterpene derivatives from the agarwood of Aquilaria malaccensis and their anti-inflammatory effects on NO production of macrophage RAW 264.7 cells . Phytochemistry 183:112630.
  • Tiwari S. (2008). Plants: a rich source of herbal medicine. J Nat Prod 1:27–35.
  • UNEP WCMC. (2014). Checklist of cites species. Available at: https://www.unep-wcmc.org/resources-and-data/checklist-of-cites-species.
  • Vishakha K, Kishor B, Sudha R. (2017). Natural polymers – a comprehensive review. International J Res Pharm Biomed Sci 3:1597–613.
  • Wagh VD, Korinek M, Lo I-W, et al. (2017). Inflammation modulatory phorbol esters from the seeds of Aquilaria malaccensis. J Nat Prod 80:1421–7.
  • Wang HM-D, Fu L, Cheng CC, et al. (2019). Inhibition of LPS-induced oxidative damages and potential anti-inflammatory effects of Phyllanthus. Antioxidants 8:270.
  • Wang S, Chen T, Chen R, et al. (2012). Emodin loaded solid lipid nanoparticles: PREPARATION, characterization and antitumor activity studies. Int J Pharm 430:238–46.
  • Wibowo I, Permadi K, Hartati R, Damayanti S. (2018). Ethanolic extract of pomegranate (Punica granatum L) peel: acute toxicity tests on zebrafish (Danio rerio) embryos and its toxicity prediction by in silico. J Appl Pharm Sci 8:82–6.
  • Won A, Kim SA, Ahn JY, et al. (2018). HO-1 induction by Selaginella tamariscina extract inhibits inflammatory response in lipopolysaccharide-stimulated RAW 264. 7 macrophages. Evid Based Complement Alternat Med 2018:7816923.
  • Wu L, Zhang J, Watanabe W. (2011). Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63:456–69.
  • Xiao Z, Xu Z, Zhu G. (2017). Production and characterization of nanocapsules encapsulated linalool by ionic gelation method using chitosan as wall material. Food Sci Technol 37:613–9.
  • Yamala AK, Nadella V, Mastai Y, et al. (2017). Poly-N-acryloyl-(L-phenylalanine methyl ester) hollow core nanocapsules facilitate sustained delivery of immunomodulatory drugs and exhibit adjuvant properties. Nanoscale 9:14006–14.
  • Yang LL, Wang GQ, Yang LM, et al. (2014). Endotoxin molecule lipopolysaccharide-induced zebrafish inflammation model: A novel screening method for anti-inflammatory drugs. Molecules 19:2390–409.
  • Zhang C, Willett C, Fremgen T. (2003). Zebrafish\: an animal model for toxicological studies. Curr Protoc Toxicol 17:1–18.