217
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Validity and reliability of inertial measurement units for gait assessment within a post stroke population

, , , , &
Pages 235-243 | Received 20 Feb 2023, Accepted 15 Jul 2023, Published online: 06 Aug 2023

References

  • Patterson KK, Parafianowicz I, Danells CJ, Closson V, Verrier MC, Staines WR, et al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil. 2008;89(2):304–310. doi:10.1016/j.apmr.2007.08.142.
  • Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, et al. Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury. J Neurol Phys Ther. Jan 2020;44(1):49–100. doi:10.1097/NPT.0000000000000303.
  • Kautz SA, Bowden MG, Clark DJ, Neptune RR. Comparison of motor control deficits during treadmill and overground walking poststroke. Neurorehabil Neural Repair. Oct, 2011;25(8):756–765. doi:10.1177/1545968311407515.
  • Miller E, Kaufman K, Kingsbury T, Wolf E, Wilken J, Wyatt M. Mechanical testing for three-dimensional motion analysis reliability. Gait Posture. Oct 2016;50:116–119. doi:10.1016/j.gaitpost.2016.08.017.
  • Lee H-K, Kim J-H, Myoung H-S, Lee J-H, Lee K-J. Repeatability of the accelerometric-based method to detect step events for hemiparetic stroke patients. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. Boston, MA: IEEE; p. 5195–5198. 2011 http://ieeexplore.ieee.org/document/6091285/. Accessed Mar 24, 2021.
  • Moore SA, Hickey AH, Lord S, Del Din S, Godfrey A, Rochester L. Quantifying temporal and spatial gait characteristics in the clinic and community with a low-cost accelerometer-based wearable: A feasibility, validity and reliability study. Int J Stroke. 2017;12(suppl 5): 7–59.
  • Bernhard FP, Sartor J, Bettecken K, Hobert MA, Arnold C, Weber YG, et al. Wearables for gait and balance assessment in the neurological ward - study design and first results of a prospective cross-sectional feasibility study with 384 inpatients. BMC Neurol. 2018;18(1). doi:10.1186/s12883-018-1111-7.
  • Simoes MA. Feasibility of wearable sensors to determine gait parameters. Department of Mechanical Engineering. Tampa, FL: USF Tampa Graduate Theses and Dissertations; 2011.
  • Liu T, Inoue Y, Shibata K. Development of a wearable sensor system for quantitative gait analysis. Meas J Int Meas Confed. 2009;42(7):978–988. doi:10.1016/j.measurement.2009.02.002.
  • Al-Amri M, Nicholas K, Button K, Sparkes V, Sheeran L, Davies J. Inertial measurement units for clinical movement analysis: Reliability and concurrent validity. Sensors. 2018 Feb 28;18(3):719. doi:10.3390/s18030719.
  • Mancini M, Horak FB. Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Rev Med Devices. 2016;13(5):455–462. doi:10.1586/17434440.2016.1153421.
  • Washabaugh EP, Kalyanaraman T, Adamczyk PG, Claflin ES, Krishnan C. Validity and repeatability of inertial measurement units for measuring gait parameters. Gait Posture. 2017;55:87–93. doi10.1016/j.gaitpost.2017.04.013.
  • Morris R, Stuart S, McBarron G, Fino PC, Mancini M, Curtze C. Validity of mobility lab (version 2) for gait assessment in young adults, older adults and Parkinson’s disease. Physiol Meas. Sep, 2019;40(9):095003. doi:10.1088/1361-6579/ab4023.
  • Mancini M, King L, Salarian A, Holmstrom L, McNames J, Horak FB. Mobility lab to assess balance and gait with synchronized body-worn sensors. J Bioeng Biomed Sci. 2011 Dec;12(Suppl 1):007.
  • Rashid U, Kumari N, Taylor D, David T, Signal N. Gait event anomaly detection and correction during a split-belt treadmill task. IEEE Access. 2019;7:68469–68478. doi10.1109/ACCESS.2019.2918559.
  • Bruening DA, Ridge ST. Automated event detection algorithms in pathological gait. Gait Posture. 2014;39(1):472–477. doi:10.1016/j.gaitpost.2013.08.023.
  • Kim H, Kim YH, Kim SJ, Choi MT. Pathological gait clustering in post-stroke patients using motion capture data. Gait Posture. 2022 May 1;94:210–216. doi:10.1016/j.gaitpost.2022.03.007.
  • Cruz TH, Lewek MD, Dhaher YY. Biomechanical impairments and gait adaptations post-stroke: multi-factorial associations. J Biomech. 2009 Aug 7;42(11):1673–1677. doi:10.1016/j.jbiomech.2009.04.015.
  • Donlin MC, Ray NT, Higginson JS. User-driven treadmill walking promotes healthy step width after stroke. Gait Posture. May 2021;86:256–259. doi:10.1016/j.gaitpost.2021.03.031.
  • Zeni JA, Richards JG, Higginson JS. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. May, 2008;27(4):710–714. doi:10.1016/j.gaitpost.2007.07.007.
  • Patterson KK, Gage WH, Brooks D, Black SE, McIlroy WE. Evaluation of gait symmetry after stroke: A comparison of current methods and recommendations for standardization. Gait Posture. 2010 Feb 1;31(2):241–246. doi:10.1016/j.gaitpost.2009.10.014.
  • Lin LIK. A concordance correlation coefficient to evaluate reproducibility. Biometrics. Mar, 1989;45(1):255. doi:10.2307/2532051.
  • Lin LI, McBride G, Bland JM, Altman DG. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. Hamilton, NZ: National Institute of Water & Atmospheric Research; 2005.
  • Papi E, Osei-Kuffour D, Chen YMA, McGregor AH. Use of wearable technology for performance assessment: A validation study. Med Eng Phys. Jul, 2015;37(7):698–704. doi:10.1016/j.medengphy.2015.03.017.
  • Fusca M, Negrini F, Perego P, Magoni L, Molteni F, Andreoni G. Validation of a wearable IMU system for gait analysis: Protocol and application to a new system. Appl Sci. 2018 Jul 18;8(7):1167. doi:10.3390/app8071167.
  • Row Lazzarini BS, Kataras TJ. Treadmill walking is not equivalent to overground walking for the study of walking smoothness and rhythmicity in older adults. Gait Posture. May 2016;46:42–46. doi:10.1016/j.gaitpost.2016.02.012.
  • An CM, Son YL, Park YH, Moon SJ. Relationship between dynamic balance and spatiotemporal gait symmetry in hemiplegic patients with chronic stroke. Hong Kong Physiother J. Dec 2017;37:19–24. doi:10.1016/j.hkpj.2017.01.002.
  • Rozanski GM, Wong JS, Inness EL, Patterson KK, Mansfield A. Longitudinal change in spatiotemporal gait symmetry after discharge from inpatient stroke rehabilitation. Disabil Rehabil. 2020 Feb 27;42(5):705–711. doi:10.1080/09638288.2018.1508508.
  • Singh AK, Farmer C, Den Berg MLE V, Killington M, Barr CJ. Accuracy of the FitBit at walking speeds and cadences relevant to clinical rehabilitation populations. Disabil Health J. Apr, 2016;9(2):320–323. doi:10.1016/j.dhjo.2015.10.011.
  • Klassen TD, Semrau JA, Dukelow SP, Bayley MT, Hill MD, Eng JJ. Consumer-based physical activity monitor as a practical way to measure walking intensity during inpatient stroke rehabilitation. Stroke. Sep, 2017;48(9):2614–2617. doi:10.1161/STROKEAHA.117.018175.
  • Clay L, Webb M, Hargest C, Adhia DB. Gait quality and velocity influences activity tracker accuracy in individuals post-stroke. Top Stroke Rehabil. Sep, 2019;26(6):412–417. doi:10.1080/10749357.2019.1623474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.