1,263
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimating the minimal clinically important difference of upper extremity outcome measures in chronic stroke patients with moderate to severe impairment: a cross-sectional study

, , , , , , , & show all
Pages 409-417 | Received 18 May 2023, Accepted 09 Sep 2023, Published online: 24 Sep 2023

References

  • Lai SM, Perera S, Duncan PW, Bode R. Physical and social functioning after stroke: comparison of the stroke Impact Scale and short form-36. Stroke. 2003;34(2):488–493. doi:10.1161/01.STR.0000054162.94998.C0.
  • Gresham G, Fitzpatrick T, Wolf P, et al. Residual disability in survivors of stroke — the Framingham study. N Engl J Med. 1975;293(19):954–956. doi:10.1056/NEJM197511062931903.
  • Lloyd-Jones D, Adams RJ, Brown TM, et al. Executive summary: heart disease and stroke statistics—2010 update. Circulation. 2010;121(7):948–954. doi:10.1161/CIRCULATIONAHA.109.192666.
  • Gray LJ, Sprigg N, Bath PMW, et al. Sex differences in quality of life in stroke survivors. Data from the Tinzaparin in Acute Ischaemic Stroke Trial (TAIST). Stroke. 2007;38(11):2960–2964. doi:10.1161/STROKEAHA.107.488304.
  • Barak S, Duncan PW. Issues in selecting outcome measures to assess functional recovery after stroke. NeuroRx. 2006;3(4):505–524. doi:10.1016/j.nurx.2006.07.009. PubMed: 17012065.
  • Finch E, Brooks D, Stratford PW, Mayo NE. Physical Rehabilitation Outcome Measures. Hamilton, ON: BC Decker Inc; 2002.
  • de Vet HC, Terwee CB, Ostelo RW, Beckerman H, Knol DL, Bouter LM. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change. Health Qual Life Outcomes. 2006;4:54. doi:10.1186/1477-7525-4-54. PubMed: 16925807.
  • Lang CE, Edwards DF, Birkenmeier RL, Dromerick AW. Estimating minimal clinically important differences of upper-extremity measures early after stroke. Arch Phys Med Rehabil. 2008;89(9):1693–1700. doi:10.1016/j.apmr.2008.02.022.
  • Uswatte G, Taub E, Morris D, Vignolo M, McCulloch K. Reliability and validity of the upper-extremity Motor Activity Log-14 for measuring real-world arm use. Stroke. November, 2005;36(11):2493–2496. doi:10.1161/01.STR.0000185928.90848.2e. Epub October 13, 2005. PMID: 16224078.
  • Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31. doi:10.2340/1650197771331.
  • Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4(4):483–492. doi:10.1097/00004356-198112000-00001.
  • Duncan PW, Bode RK, Min Lai S, Perera S. Rasch analysis of a new stroke-specific outcome scale: the stroke impact scale11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Arch Phys Med Rehabil. 2003;84(7):950–963. doi:10.1016/s0003-9993(03)00035-2.
  • Kelly KM, Borstad AL, Kline D, Gauthier LV. Improved quality of life following constraint-induced movement therapy is associated with gains in arm use, but not motor improvement. Top Stroke Rehabil. 2018;25(7):467–474. doi:10.1080/10749357.2018.1481605.
  • Takebayashi T, Takahashi K, Amano S, et al. Robot-assisted training as self-training for upper-limb hemiplegia in chronic stroke: a randomized controlled trial. Stroke. 2022;53(7):2182–2191. doi:10.1161/STROKEAHA.121.037260.
  • Takebayashi T, Takahashi K, Amano S, et al. Assessment of the efficacy of reogo-j robotic training against other rehabilitation therapies for upper-limb hemiplegia after stroke: protocol for a randomized controlled trial. Front Neurol. 2018;9:730. doi:10.3389/fneur.2018.00730.
  • Chino N, Sonoda S, Domen K, Saitoh E, Kimura A. Stroke impairment assessment set (SIAS). In: Chino N Melvin J, eds. Functional Evaluation of Stroke Patients. Springer; 1996. doi:10.1007/978-4-431-68461-9.
  • Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–207. doi:10.1093/ptj/67.2.206.
  • Amano S, Umeji A, Uchita A, et al. Reliability of remote evaluation for the Fugl-Meyer assessment and the action research arm test in hemiparetic patients after stroke. Top Stroke Rehabil. 2018;25:432–437. doi:10.1080/10749357.2018.1484987.
  • Lin KC, Fu T, Wu CY, et al. Minimal detectable change and clinically important difference of the stroke Impact Scale in stroke patients. Neurorehabil Neural Repair. 2010;24(5):486–492. doi:10.1177/1545968309356295.
  • Arya KN, Verma R, Garg RK. Estimating the minimal clinically important difference of an upper extremity recovery measure in subacute stroke patients. Top Stroke Rehabil. 2011;Suppl 18(sup1):599–610. doi:10.1310/tsr18s01-599.
  • Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther. 2012;92(6):791–798. doi:10.2522/ptj.20110009.
  • Swets JA. Measuring the accuracy of diagnostic systems. Science. June 3, 1988;240(4857):1285–1293. doi:10.1126/science.3287615. PMID: 3287615.
  • Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32–35. doi:10.1002/1097-0142(1950)3:1<32:aid-cncr2820030106>3.0.co;2-3.
  • Wu CY, Chen CL, Tsai WC, Lin KC, Chou SH. A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in motor impairment, daily functioning, and quality of life. Arch Phys Med Rehabil. 2007;88(3):273–278. doi:10.1016/j.apmr.2006.11.021.
  • Ellis M, Sukal T, DeMott T, Dewald JP. Augmenting clinical evaluation of hemiparetic arm movement with a laboratory quantitative measurement of kinematics as a function of limb loading. Neurorehabil Neural Repair. 2008;22(4):321–329. doi:10.1177/1545968307313509.
  • Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint- induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–2104. doi:10.1001/jama.296.17.2095.
  • Studenski S, Duncan PW, Perera S, Reker D, Lai SM, Richards L. Daily functioning and quality of life in a randomized controlled trial of therapeutic exercise for subacute stroke survivors. Stroke. 2005;36(8):1764–1770. doi:10.1161/01.STR.0000174192.87887.70.
  • Mitchell PH, Teri L, Veith R, et al. Living well with stroke: design and methods for a randomized controlled trial of a psychosocial behavioral intervention for poststroke depression. J Stroke Cerebrovasc Dis. 2008;17(3):109–115. doi:10.1016/j.jstrokecerebrovasdis.2007.12.002.
  • Lo AC, Guarino P, Krebs H, et al. Multicenter randomized trial of robot-assisted rehabilitation for chronic stroke: methods and entry characteristics for VA ROBOTICS. Neurorehabil Neural Repair. 2009;23(8):775–783. doi:10.1177/1545968309338195.
  • Lin KC, Wu CY, Liu JS, Chen YT, Hsu CJ. Constraint-induced therapy versus dose-matched control intervention to improve motor ability, basic/extended daily functions and quality of life in stroke. Neurorehabil Neural Repair. 2009;23(2):160–165. doi:10.1177/1545968308320642.
  • Benvenuti F, Macko R, Taviani A, et al. Community-based adaptive physical activity program for chronic stroke: feasibility, safety, and efficacy of the Empoli model. Neurorehabil Neural Repair. 2009;23(7):726–734. doi:10.1177/1545968309332734.
  • Dahl AE, Askim T, Stock R, Langorgen E, Lydersen S, Indredavik B. Short- and long-term outcome of constraint-induced movement therapy after stroke: a randomized controlled feasibility trial. Clin Rehabil. 2008;22(5):436–447. doi:10.1177/0269215507084581.
  • van der Lee JH, Beckerman H, Knol DL, de Vet HCW, Bouter LM. Clinimetric properties of the Motor Activity Log for the assessment of arm use in hemiparetic patients. Stroke. 2004;35(6):1410–1414. doi:10.1161/01.STR.0000126900.24964.7e.
  • van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Devillé WL, Bouter LM. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke. 1999;30(11):2369–2375. doi:10.1161/01.str.30.11.2369.
  • Chen S, Wolf SL, Zhang Q, Thompson PA, Winstein CJ. Minimal detectable change of the actual amount of use test and the motor activity log: the EXCITE trial. Neurorehabil Neural Repair. 2012;26(5):507–514. doi:10.1177/1545968311425048.
  • Haley S, Fragala-Pinkham MA. Interpreting change scores of tests and measures used in physical therapy. Phys Ther. 2006;86(5):735–743. doi:10.1093/ptj/86.5.735.
  • Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke. October, 1999;30(10):2131–2140. doi:10.1161/01.str.30.10.2131. PMID: 10512918.
  • Ware JE, Snow K, Kosinski M, Gandek B. SF-36 Health Sur- Vey: Manual and Interpretation Guide. Boston, MA: Health Institute; 1993.
  • Cella D, Hahn EA, Dineen K. Meaningful change in cancer- specific quality of life scores: differences between improvement and worsening. Qual Life Res. 2002;11(3):207–221. doi:10.1023/A:1015276414526.
  • Tubach F, Ravaud P, Baron G, et al. Evaluation of clinically relevant changes in patient reported outcomes in knee and hip osteoarthritis: the minimal clinically important improvement. Ann Rheum Dis. 2005;64(1):29–33. doi:10.1136/ard.2004.022905.
  • Kovacs FM, Abraira V, Royuela A, et al. Minimum detectable and minimal clinically important changes for pain in patients with nonspecific neck pain. BMC Musculoskelet Disord. 2008;9(1):43. doi:10.1186/1471-2474-9-43.