163
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking and toxicity studies of nerve agents against acetylcholinesterase (AChE)

, &
Pages 115-122 | Received 10 Oct 2023, Accepted 16 Dec 2023, Published online: 08 Jan 2024

References

  • Figueiredo TH, Apland JP, Braga MFM, et al. Acute and long‐term consequences of exposure to organophosphate nerve agents in humans. Epilepsia. 2018;59 Suppl 2(Suppl 2):92–99. doi:10.1111/epi.14500.
  • https://emergency.cdc.gov/agent., accessed on 19 Jan 2023.
  • Hrvat NM, Kovarik Z. Counteracting poisoning with chemical warfare nerve agents. Arh Hig Rada Toksikol. 2020;71(4):266–284. doi:10.2478/aiht-2020-71-3459.
  • Prathap Yadav RS, Vijetha Shenoy B, Kumar N, et al. In vivo acetylcholinesterase activity and antioxidant property of cucurbita pepo ethanolic extract in alzheimer’s disease induced by aluminium chloride in sprague dawley rat model. RJPT. 2023;16(3):1065–1071. doi:10.52711/0974-360X.2023.00178.
  • Athitya LS, Bharath VMV, Nellore J, et al. Screening of gracilaria corticata extracts for acetylcholinesterase inhibitory activity. Rese J Pharm Technol. 2018;11(9):3848–3850. doi:10.5958/0974-360X.2018.00704.7.
  • Dhananjayan K, Sumathy A, Palanisamy S. Molecular docking studies and in-vitro acetylcholinesterase inhibition by terpenoids and flavonoids. Asian J Res Chem. 2013;6(11):1011–1017.
  • Sahoo S, Rahman ML, Mitra S, et al. In silico investigation of methyl parathion and diazinon with different metabolic protein in Drosophila melanogaster. RJPT. 2021;14(7):3794–3798. doi:10.52711/0974-360X.2021.00657.
  • Thomas, Reshma, Hari, R., Joy, Josna, et al. ‘In silico docking approach of coumarin derivatives as an aromatase antagonist’’. Res. J. Pharm. Technol. 8.12 (2015): 1673–1678. doi:10.5958/0974-360X.2015.00302.9.
  • Ramachandran V, Khan I, Sugumar S, et al. Antioxidant, anti-inflammatory and anticholinergic action of berberine attenuates diabetic encephalopathy: behavioral and biochemical evidences. Res J Pharm Technol. 2020;13(10):4550–4556. doi:10.5958/0974-360X.2020.00802.1.
  • Sravani M, et al. Insilico analysis and docking of tacrine and donepezil derivatives targeting Histamine-N-Methyltransferase and acetyl cholinesterase protein respectively for alzheimer’s disease. Res J Pharm Technol. 2013;6(1):86–89.
  • Ko Latt K, Reng Liana S, Poddar S, et al. Pesticide utilization in Myanmar and effects on human health and environment. RJPT. 2023;16(2):681–685. doi:10.52711/0974-360X.2023.00116.
  • Lal CLV, Chandan RS, Maruthi R, et al. Bio-analytical method development and validation of dichlorvos pesticide by rp-uflc method. Res J Pharm Technol. 2020;13(8):3725–3728. doi:10.5958/0974-360X.2020.00659.9.
  • Skaria TG, Reddy BS, Vidya RVS, et al. Risk factors for the development of complications in organophosphate and carbamate poisoning. Res J Pharm Technol. 2020;13(1):361–367. doi:10.5958/0974-360X.2020.00072.4.
  • El Sayed S, Pascual L, Agostini A, et al. A chromogenic probe for the selective recognition of sarin and soman mimic DFP. ChemistryOpen. 2014;3(4):142–145. doi:10.1002/open.201402014.
  • Jang C, Yadav DK, Subedi L, et al. Identification of novel acetylcholinesterase inhibitors designed by pharmacophore-based virtual screening, molecular docking and bioassay. Sci Rep. 2018;8(1):14921. doi:10.1038/s41598-018-33354-6.
  • Cheung J, Rudolph MJ, Burshteyn F, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012;55(22):10282–10286. doi:10.1021/jm300871x.
  • Ali Marzouk H, Wibowo S, Khotimah H, et al. Molecular interaction of centella asiatica bioactive compounds and donepezil on alzheimer’s protein through in silico studies. RJPT. 2022;15(11):4887–4896. doi:10.52711/0974-360X.2022.00821.
  • Xu X, Zou X. Dissimilar ligands bind in a similar fashion: a guide to ligand binding-mode prediction with application to CELPP studies. Int J Mol Sci. 2021;22(22):12320. doi:10.3390/ijms222212320.
  • Kareem RT, Abedinifar F, Mahmood EA, et al. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s agents: highlights from 2010 to 2020. RSC Adv. 2021;11(49):30781–30797. doi:10.1039/d1ra03718h.
  • Owoloye AJ, et al. Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors. bioRxiv. 2022; doi:10.1371/journal.pone.0268269.
  • Kumar SP, Patel CN, Rawal RM, et al. Energetic contributions of amino acid residues and its cross‐talk to delineate ligand‐binding mechanism. Proteins. 2020;88(9):1207–1225. doi:10.1002/prot.25894.
  • Wiesner J, Kriz Z, Kuca K, et al. Acetylcholinesterases–the structural similarities and differences. J Enzyme Inhib Med Chem. 2007;22(4):417–424. doi:10.1080/14756360701421294.
  • Johnson JL, Cusack B, Davies MP, et al. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate. Biochemistry. 2003;42(18):5438–5452. doi:10.1021/bi027065u.
  • Radić Z, Taylor P. Interaction kinetics of reversible inhibitors and substrates with acetylcholinesterase and its fasciculin 2 complex. J Biol Chem. 2001;276(7):4622–4633. doi:10.1074/jbc.m006855200.
  • Moraga-Nicolás F, Jara C, Godoy R, et al. Rhodolirium andicola: a new renewable source of alkaloids with acetylcholinesterase inhibitory activity, a study from nature to molecular docking. Revista Brasileira de Farmacognosia. 2018;28(1):34–43. doi:10.1016/j.bjp.2017.11.009.
  • Wojtunik-Kulesza KA, Targowska-Duda K, Klimek K, et al. Volatile terpenoids as potential drug leads in alzheimer’s disease. Open Chemistry. 2017;15(1):332–343. doi:10.1515/chem-2017-0040.
  • AR, AK, KG, et al. Role of aromatic amino acids in stabilizing organophosphate and human acetylcholinesterase complex. JCPR. 2015;5(4):1632–1639. doi:10.33786/JCPR.2015.v05i04.006.
  • Zheng Q, Chu H, Niu R, et al. Theoretical studies of interaction models of human acetylcholine esterase with different inhibitors. Sci China Ser B-Chem. 2009;52(11):1911–1916. doi:10.1007/s11426-009-0281-y.
  • Ordentlich A, Barak D, Sod-Moriah G, et al. The role of AChE active site gorge in determining stereoselectivity of charged and noncharged VX enantiomers. Chem Biol Interact. 2005;157-158:191–198. doi:10.1016/j.cbi.2005.10.026.
  • Kua J, Zhang Y, Eslami AC, et al. Studying the roles of W86, E202, and Y337 in binding of acetylcholine to acetylcholinesterase using a combined molecular dynamics and multiple docking approach. Protein Sci. 2003;12(12):2675–2684. doi:10.1110/ps.03318603.
  • Shafferman A, Kronman C, Flashner Y, et al. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem. 1992;267(25):17640–17648. doi:10.1016/S0021-9258(19)37091-7.
  • Mohamed RA, Ong KK, Halim NA, et al. 4-Hydroxybenzohydrazide: a potential reactivator for Malathion-inhibited human acetylcholinesterase. IOP Conf Ser: mater Sci Eng. 2021;1051(1):012021. doi:10.1088/1757-899X/1051/1/012021.
  • Ranjan A, Chauhan A, Jindal T. In-silico and in-vitro evaluation of human acetylcholinesterase inhibition by organophosphates. Environ Toxicol Pharmacol. 2018;57:131–140. doi:10.1016/j.etap.2017.12.014.
  • Sim VM, Stubbs JL. 1960). VX percutaneous studies in man. US Army Chemical Research and Development Laboratories Technical Report, CRDLR, 3015
  • Attique SA, Hassan M, Usman M, et al. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension. Int J Environ Res Public Health. 2019;16(6):923. doi:10.3390/ijerph16060923.
  • Giacoppo JOS, C C França T, Kuča K, et al. Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. J Biomol Struct Dyn. 2015;33(9):2048–2058. doi:10.1080/07391102.2014.989408.
  • Kuca K, Musilek K, Jun D, et al. A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacol Toxicol. 2018;19(1):8. doi:10.1186/s40360-018-0196-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.