195
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Prediction of extreme climate on the Tibetan Plateau based on NEX-GDDP-CMIP6

, , , &
Pages 1261-1275 | Received 24 Feb 2023, Accepted 12 Sep 2023, Published online: 26 Sep 2023

References

  • Cai Y, Li DL, Tang MC, Bai C. 2003. Decadal temperature changes over Qinghai-Xizang Plateau in recent 50 years. Plateau Meteorol. 22(5):464–470. (in Chinese).
  • Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, et al. 2013. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai‐Tibetan Plateau. Glob Chang Biol. 19(10):2940–2955. doi: 10.1111/gcb.12277.
  • Chen HJ, Yang JP, Ding YJ. 2021. Evaluation of extreme weather indices over Qinghai-Xizang Plateau in NEX-GDDP. Plateau Meteorology. 40(5):977–990. (in Chinese). doi: 10.7522/j.issn.1000-0534.2020.00104.
  • Chen HP, Sun JQ, Li HX. 2017. Future changes in precipitation extremes over China using the NEX-GDDP high-resolution daily downscaled data-set. Atmos Oceanic Sci Lett. 10(6):403–410. doi: 10.1080/16742834.2017.1367625.
  • Chen HP, Sun JQ. 2015. Assessing model performance of climate extremes in China: an intercomparison between CMIP5 and CMIP3. Clim Change. 129(1–2):197–211. doi: 10.1007/s10584-014-1319-5.
  • Chen JH, Wang YF, Sun J, Liang EY, Shen MG, Yang B, Jia XH, Zhang JX. 2021. Precipitation dominants synergies and trade-offs among ecosystem services across the Qinghai-Tibet Plateau. Global Ecol Conserv. 32:e01886. doi: 10.1016/j.gecco.2021.e01886.
  • Chen R, Li HY, Wang XJ, Gou XH, Yang MX, Wan GN. 2022. Surface air temperature changes over the Tibetan Plateau: historical evaluation and future projection based on CMIP6 models. Geosci Front. 13(6):101452. doi: 10.1016/j.gsf.2022.101452.
  • Ciavarella A, Stott P, Lowe J. 2017. Early benefits of mitigation in risk of regional climate extremes. Nat Clim Change. 7(5):326–330. doi: 10.1038/nclimate3259.
  • Guo B, Kong WH, Jiang L, Fan YW. 2018. Analysis of spatial and temporal changes and its driving mechanism of ecological vulnerability of alpine ecosystem in Qinghai Tibet Plateau. Ecol Sci. 37(3):96–106. (in Chinese). doi: 10.14108/j.cnki.1008-8873.2018.03.013.
  • Guo DL, Wang HJ. 2012. The significant climate warming in the northern Tibetan Plateau and its possible causes. Int J Climatol. 32(12):1775–1781. doi: 10.1002/joc.2388.
  • Huang DQ, Yan PW, Zhu J, Zhang YC, Kuang XY, Cheng J. 2018. Uncertainty of global summer precipitation in the CMIP5 models: a comparison between high-resolution and low-resolution models. Theor Appl Climatol. 132(1–2):55–69. doi: 10.1007/s00704-017-2078-9.
  • Huang DQ, Zhu J, Zhang YC, Huang AN. 2013. Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J Geophys Res: Atmos. 118(16):9035–9047. doi: 10.1002/jgrd.50695.
  • IPCC. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors]. Cambridge, UK: Cambridge University Press, 996 pp.
  • IPCC. 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker TF,Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors]. Cambridge, UK: Cambridge University Press, 1535 pp.
  • Karl TR, Nicholls N, Ghazi A. 1999. Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. Clim Change. 42(1):3–7. doi: 10.1023/A:1005491526870.
  • Kendall MG. 1948. Rank correlation methods. London: Charles Griffin.
  • Li L, Zhu XD, Qin NS, Wang ZY, Wang QC, Zhou LS. 2003. Study on temperature variations and its anomaly patterns over Qinghai-Xizang Plateau. Plateau Meteorol. 22(5):524–530. (in Chinese).
  • Li XY, Long D, Scanlon BR, Mann ME, Li XD, Tian FQ, Sun ZL, Wang GQ. 2022. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat Clim Chang. 12(9):801–807. doi: 10.1038/s41558-022-01443-0.
  • Li YC, Li ZX, Zhang XP, Gui, JXJ. 2022. Vegetation variations and its driving factors in the transition zone between Tibetan Plateau and arid region. Ecol Indic. 141:109101. doi: 10.1016/j.ecolind.2022.109101.
  • Li YJ, Ye T, Liu WH, Gao Y. 2018. Linking livestock snow disaster mortality and environmental stressors in the Qinghai-Tibetan Plateau: quantification based on generalized additive models. Sci Total Environ. 625:87–95. doi: 10.1016/j.scitotenv.2017.12.230.
  • Liu XD, Chen BD. 2000. Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol. 20(14):1729–1742. doi: 10.1002/1097-0088(20001130)20:14 < 1729::AID-JOC556 > 3.0.CO;2-Y.
  • Liu ZC, Yang MX, Wan GN, Wang XJ. 2017. The spatial and temporal variation of temperature in the Qinghai-Xizang (Tibetan) Plateau during 1971–2015. Atmosphere. 8(11):214. doi: 10.3390/atmos8110214.
  • Mann HB. 1945. Nonparametric tests against trend. Econometrica. 13(3):245–259. doi: 10.2307/1907187.
  • Maxwell SL, Butt N, Maron M, McAlpine CA, Chapman S, Ullmann A, Segan DB, Watson JE. 2019. Conservation implications of ecological responses to extreme weather and climate events. Divers Distrib. 25(4):613–625. doi: 10.1111/ddi.12878.
  • McKee TB, Doesken NJ, Kleist J. 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. Vol. 17. p. 179–183.
  • Miles E, McCarthy M, Dehecq A, Kneib M, Fugger S, Pellicciotti F. 2021. Health and sustainability of glaciers in High Mountain Asia. Nat Commun. 12(1):2868. doi: 10.1038/s41467-021-23073-4.
  • Nashwan MS, Shahid S. 2020. A novel framework for selecting general circulation models based on the spatial patterns of climate. Int J Climatol. 40(10):4422–4443. doi: 10.1002/joc.6465.
  • O'Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J-F, Lowe J, et al. 2016. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev. 9(9):3461–3482. 2016. doi: 10.5194/gmd-9-3461-2016.
  • Park T, Hashimoto H, Wang WL, Thrasher B, Michaelis AR, Lee T, Brosnan IG, Nemani RR. 2023. What does global land climate look like at 2 °C warming? Earth’s Future. 11(5):e2022EF003330. doi: 10.1029/2022EF003330.
  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, et al. 2015. Elevation-dependent warming in mountain regions of the world. Nat Clim Change. 5(5):424–430. doi: 10.1038/nclimate2563.
  • Perkins SE, Alexander LV. 2013. On the measurement of heat waves. J Clim. 26(13):4500–4517. doi: 10.1175/JCLI-D-12-00383.1.
  • Peterson T, Folland C, Gruza G, Hogg W, Mokssit A, Plummer N. 2001. Report on the activities of the working group on climate change detection and related rapporteurs. Geneva: World Meteorological Organization.
  • Ran YH, Cheng GD, Dong YH, Hjort J, Lovecraft AL, Kang SC, Tan MB, Li X. 2022. Permafrost degradation increases risk and large future costs of infrastructure on the Third Pole. Commun Earth Environ. 3(1):238. doi: 10.1038/s43247-022-00568-6.
  • Ran YH, Li X, Cheng GD. 2018. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere. 12(2):595–608. doi: 10.5194/tc-12-595-2018.
  • Sen PK. 1968. Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc. 63(324):1379–1389. doi: 10.2307/2285891.
  • Seneviratne S, Nicholls N, Easterling D, Goodess C, Kanae S, Kossin J, Luo YL, Marengo J, McInnes K, Rahimi M. 2012. Changes in climate extremes and their impacts on the natural physical environment. In: Field, CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K ,Allen SK, Tignor M, Midgley PM, editors. Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK: Cambridge University Press. p. 109–230.
  • Shadmani M, Marofi S, Roknian M. 2012. Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resour Manage. 26(1):211–224. doi: 10.1007/s11269-011-9913-z.
  • Sun J, Liang EY, Barrio IC, Chen J, Wang JN, Fu BJ. 2021. Fences undermine biodiversity targets. Science. 374(6565):269–269. doi: 10.1126/science.abm3642.
  • Theil H. 1950. A rank-invariant method of linear and polynomial regression analysis. Indagationes Math. 12(85):173. doi: 10.1007/978-94-011-2546-8_20.
  • Thrasher B, Wang WL, Michaelis A, Melton F, Lee T, Nemani R. 2022. NASA global daily downscaled projections, CMIP6. Sci Data. 9(1):262. doi: 10.1038/s41597-022-01393-4.
  • Ukkola AM, De Kauwe MG, Roderick ML, Abramowitz G, Pitman AJ. 2020. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys Res Lett. 47(11):e2020GL087820. doi: 10.1029/2020GL087820.
  • Vicente-Serrano SM, Beguería S, López-Moreno JI. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim. 23(7):1696–1718. doi: 10.1175/2009JCLI2909.1.
  • Wang X, Yang JW, Xiong JN, Shen GY, Yong ZW, Sun HZ, He W, Luo SY, Cui XJ. 2022. Investigating the impact of the spatiotemporal bias correction of precipitation in CMIP6 climate models on drought assessments. Remote Sensing. 14(23):6172. doi: 10.3390/rs14236172.
  • Wang XG, Li TX, Ikhumhen HO, M. Sá R. 2022. Spatio-temporal variability and persistence of PM2.5 concentrations in China using trend analysis methods and Hurst exponent. Atmos Pollut Res. 13(1):101274. doi: 10.1016/j.apr.2021.101274.
  • Wang XJ, Pang GJ, Yang MX, Zhao GH. 2017. Evaluation of climate on the Tibetan Plateau using ERA-Interim reanalysis and gridded observations during the period 1979–2012. Quat Int. 444:76–86. doi: 10.1016/j.quaint.2016.12.041.
  • Wang ZY, Song W, Yin LC. 2022. Responses in ecosystem services to projected land cover changes on the Tibetan Plateau. Ecol Indic. 142:109228. doi: 10.1016/j.ecolind.2022.109228.
  • WMO. 2012. Standardized precipitation index user guide. (M. Svoboda, M. Hayes and D. Wood). Geneva: World Meteorological Organization, (WMO-No. 1090).
  • Wu F, Jiao DL, Yang XL, Cui ZY, Zhang HS, Wang YH. 2023. Evaluation of NEX-GDDP-CMIP6 in simulation performance and drought capture utility over China – based on DISO. Hydrol Res. 54(5):703–721. doi: 10.2166/nh.2023.140.
  • Xu YM, Knudby A, Ho HC, Shen Y, Liu YH. 2017. Warming over the Tibetan Plateau in the last 55 years based on area-weighted average temperature. Reg Environ Change. 17(8):2339–2347. doi: 10.1007/s10113-017-1163-z.
  • Yang T, Hao XB, Shao QX, Xu CY, Zhao CY, Chen X, Wang WG. 2012. Multi-model ensemble projections in temperature and precipitation extremes of the Tibetan Plateau in the 21st century. Global Planet Change. 80-81:1–13. doi: 10.1016/j.gloplacha.2011.08.006.
  • Yang Y, Hu Z, Lu F, Cai Y, Yu H, Guo R, Fu C, Fan W, Wu D. 2022. Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau. Plateau Meteorol. 41:1–10. doi: 10.7522/j.issn.1000-0534.2021.00117.
  • Yao TD, Bolch T, Chen DL, Gao J, Immerzeel W, Piao SL, Su FG, Thompson L, Wada Y, Wang L, et al. 2022. The imbalance of the Asian water tower. Nat Rev Earth Environ. 3(10):618–632. doi: 10.1038/s43017-022-00299-4.
  • Ye T, Liu WH, Chen S, Chen DL, Shi PJ, Wang AH, Li YJ. 2022. Reducing livestock snow disaster risk in the Qinghai–Tibetan Plateau due to warming and socioeconomic development. Sci Total Environ. 813:151869. doi: 10.1016/j.scitotenv.2021.151869.
  • You QL, Wu FY, Shen LC, Pepin N, Jiang ZH, Kang SC. 2020. Tibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C. Global Planet Change. 192:103261. doi: 10.1016/j.gloplacha.2020.103261.
  • You QL, Zhang YQ, Xie XY, Wu FY. 2019. Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 °C and 2 °C. Clim Dyn. 53(3–4):2047–2060. doi: 10.1007/s00382-019-04775-4.
  • Yuan TG, Chen SY, Wang L, Yang YX, Bi HR, Zhang XR, Zhang Y. 2020. Impacts of two East Asian atmospheric circulation modes on black carbon aerosol over the Tibetan Plateau in winter. J Geophys Res: Atmos. 125(12):e2020JD032458. doi: 10.1029/2020JD032458.
  • Zhang GF, Nan ZT, Hu N, Yin ZY, Zhao L, Cheng GD, Mu CC. 2022. Qinghai-Tibet Plateau permafrost at risk in the late 21st century. Earth’s Future. 10(6):e2022EF002652. doi: 10.1029/2022EF002652.
  • Zhang XB, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW. 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change. 2(6):851–870. doi: 10.1002/wcc.147.
  • Zhang XB, Hegerl G, Zwiers FW, Kenyon J. 2005. Avoiding inhomogeneity in percentile-based indices of temperature extremes. J Clim. 18(11):1641–1651. doi: 10.1175/JCLI3366.1.
  • Zhang Y, Duan KQ, Shi PH. 2022. Analysis of the 0 °C level height variation over the Qinghai-Tibet Plateau in summer from 1979 to 2100. J Glaciol Geocryol. 44(1):34–45. doi: 10.7522/j.issn.1000-0240.2022.0018.
  • Zhang Y, Li QZ, Ge Y, Du X, Wang HY. 2022. Growing prevalence of heat over cold extremes with overall milder extremes and multiple successive events. Commun Earth Environ. 3(1):73. doi: 10.1038/s43247-022-00404-x.
  • Zhang YQ, You QL, Ullah S, Chen CC, Shen LC, Liu Z. 2023. Substantial increase in abrupt shifts between drought and flood events in China based on observations and model simulations. Sci Total Environ. 876:162822. doi: 10.1016/j.scitotenv.2023.162822.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.