215
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Porous microneedle arrays as promising tools for the quantification of drugs in the skin: a proof of concept study

ORCID Icon, , , , , , & show all
Pages 164-175 | Received 30 Sep 2023, Accepted 13 Feb 2024, Published online: 04 Mar 2024

References

  • Abe H, Matsui Y, Kimura N, Nishizawa M. 2021. Biodegradable porous microneedles for an electric skin patch. Macro Materials & Eng. 306(9):2100171. doi: 10.1002/mame.202170033.
  • Anonymous MATERIALS SCIENCE. 2023. Surface analysis techniques: surface chemistry of materials investigated with spectroscopy techniques. https://www.thermofisher.com/sa/en/home/materials-science/xps-technology/multi-technique-workflow.html?cid=msd_ms_sbu_xmkt_xps_197250_gl_pso_gaw_e7kwkf&gad=1&gclid=Cj0KCQjwi7GnBhDXARIsAFLvH4k6ZTQvW0-K3GXNmIi1tvqNI69pw5mbcSN9TQ-tVOVnbUwdb5up5OYaAjh2EALw_wcB. (accessed August 28,
  • Bao L, Park J, Bonfante G, Kim B. 2022. Recent advances in porous microneedles: materials, fabrication, and transdermal applications. Drug Deliv Transl Res. 12(2):395–414. doi: 10.1007/s13346-021-01045-x.
  • Barud HS, de Araújo Júnior AM, Santos DB, de Assunção RMN, Meireles CS, Cerqueira DA, Rodrigues Filho G, Ribeiro CA, Messaddeq Y, Ribeiro SJL. 2008. Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta. 471(1–2):61–69. doi: 10.1016/j.tca.2008.02.009.
  • Bodenlenz M, Tiffner KI, Raml R, Augustin T, Dragatin C, Birngruber T, Schimek D, Schwagerle G, Pieber TR, Raney SG, et al. 2017. Open flow microperfusion as a dermal pharmacokinetic approach to evaluate topical bioequivalence. Clin Pharmacokinet. 56(1):91–98. doi: 10.1007/s40262-016-0442-z.
  • Braddy AC, Davit BM, Stier EM, Conner DP. 2015. Survey of international regulatory bioequivalence recommendations for approval of generic topical dermatological drug products. Aaps J. 17(1):121–133. doi: 10.1208/s12248-014-9679-3.
  • Courtenay AJ, McAlister E, McCrudden MTC, Vora L, Steiner L, Levin G, Levy-Nissenbaum E, Shterman N, Kearney M, McCarthy HO, et al. 2020. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. J Control Release. 322:177–186. doi: 10.1016/j.jconrel.2020.03.026.
  • de Carvalho Eufrásio Pinto M, David da Silva D, Amorim Gomes AL, Leite VDSA, Fialho E Moraes AR, Ferreira de Novais R, Tronto J, Pinto FG. 2019. Film based on magnesium impregnated biochar/cellulose acetate for phosphorus adsorption from aqueous solution. RSC Adv. 9(10):5620–5627. doi: 10.1039/c8ra06655h.
  • Dugam S, Tade R, Dhole R, Nangare S. 2021. Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives. Futur J Pharm Sci. 7(1):19–26. doi: 10.1186/s43094-020-00176-1.
  • Eltayib E, Brady AJ, Caffarel-Salvador E, Gonzalez-Vazquez P, Zaid Alkilani A, McCarthy HO, McElnay JC, Donnelly RF. 2016. Hydrogel-forming microneedle arrays: potential for use in minimally-invasive lithium monitoring. Eur J Pharm Biopharm. 102:123–131. doi: 10.1016/j.ejpb.2016.03.009.
  • Ferreira MV, Filho LAP, Takeuchi RM, Assunção RMN. 2020. Thermal decomposition kinetics of ibuprofen and naproxen drugs incorporated in cellulose acetate matrices. Macromolecular Symposia. 394(1) 2000156-n/a. doi: 10.1002/masy.202000156.
  • Halder J, Gupta S, Kumari R, Gupta GD, Rai VK. 2021. Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery. J Pharm Innov. 16(3):558–565. doi: 10.1007/s12247-020-09460-2.
  • He YT, Liang L, Zhao ZQ, Hu LF, Fei WM, Chen BZ, Cui Y, Guo XD. 2022. Advances in porous microneedle systems for drug delivery and biomarker detection: a mini review. J Drug Delivery Sci Technol. 74:103518. doi: 10.1016/j.jddst.2022.103518.
  • Herkenne C, Alberti I, Naik A, Kalia YN, Mathy F, Préat V, Guy RH. 2008. In vivo methods for the assessment of topical drug bioavailability. Pharm Res. 25(1):87–103. doi: 10.1007/s11095-007-9429-7.
  • Himawan A, Vora LK, Permana AD, Sudir S, Nurdin AR, Nislawati R, Hasyim R, Scott CJ, Donnelly RF. 2023. Where microneedle meets biomarkers: futuristic application for diagnosing and monitoring localized external organ diseases (Adv. Healthcare Mater. 5/2023). Adv Healthcare Materials. 12(5) 2370025-n/a. doi: 10.1002/adhm.202370025.
  • Jahan MS, Islam MJ, Begum R, Kayesh R, Rahman A. 2014, 2014. A study of method development, validation, and forced degradation for simultaneous quantification of paracetamol and ibuprofen in pharmaceutical dosage form by RP-HPLC method. Anal Chem Insights. 9:75–81. doi: 10.4137/ACI.S18651.
  • Kanfer, I. 2015. Methods for the assessment of bioequivalence of topical dosage forms: correlations, optimization strategies, and innovative approaches. In: Shah, V. P., Miabach, H. I. and Jenner, J., editors. Topical drug bioavailability, bioequivalence, and penetration; New York, NY: Springer;p. 113–151.
  • Khan S, Minhas MU, Tekko IA, Donnelly RF, Thakur RRS. 2019. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery. Drug Deliv Transl Res. 9(4):764–782. doi: 10.1007/s13346-019-00617-2.
  • Liu P, Du H, Chen Y, Wang H, Mao J, Zhang L, Tao J, Zhu J. 2020. Polymer microneedles with interconnected porous structures via a phase inversion route for transdermal medical applications. J Mater Chem B. 8(10):2032–2039. doi: 10.1039/c9tb02837d.
  • Makvandi P, Kirkby M, Hutton ARJ, Shabani M, Yiu CKY, Baghbantaraghdari Z, Jamaledin R, Carlotti M, Mazzolai B, Mattoli V, et al. 2021. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nanomicro Lett. 13(1):93. doi: 10.1007/s40820-021-00611-9.
  • Nair A, Jacob S, Al-Dhubiab B, Attimarad M, Harsha S. 2013. Basic considerations in the dermatokinetics of topical formulations. Braz J Pharm Sci. 49(3):423–434. doi: 10.1590/S1984-82502013000300004.
  • Paredes AJ, Permana AD, Volpe-Zanutto F, Amir MN, Vora LK, Tekko IA, Akhavein N, Weber AD, Larrañeta E, Donnelly RF. 2022. Ring inserts as a useful strategy to prepare tip-loaded microneedles for long-acting drug delivery with application in HIV pre-exposure prophylaxis. Mater Des. 224:111416. doi: 10.1016/j.matdes.2022.111416.
  • Paredes AJ, Volpe-Zanutto F, Permana AD, Murphy AJ, Picco CJ, Vora LK, Coulter JA, Donnelly RF. 2021. Novel tip-loaded dissolving and implantable microneedle array patches for sustained release of finasteride. Int J Pharm. 606:120885. doi: 10.1016/j.ijpharm.2021.120885.
  • Ramadon D, Ulayya F, Qur’ani AS, Iskandarsyah I, Harahap Y, Anjani QK, Aileen V, Hartrianti P, Donnelly RF. 2023. Combination of dissolving microneedles with nanosuspension and co-grinding for transdermal delivery of ketoprofen. Pharmaceuticals. 16(3):378. doi: 10.3390/ph16030378.
  • Reimann E, Abram K, Kõks S, Kingo K, Fazeli A. 2019. Identification of an optimal method for extracting RNA from human skin biopsy, using domestic pig as a model system
  • Sabri AHB, Anjani QK, Donnelly RF. 2021. Synthesis and characterization of sorbitol laced hydrogel-forming microneedles for therapeutic drug monitoring. Int J Pharm. 607:121049. doi: 10.1016/j.ijpharm.2021.121049.
  • Sánchez-Márquez JA, Fuentes-Ramírez R, Cano-Rodríguez I, Gamiño-Arroyo Z, Rubio-Rosas E, Kenny JM, Rescignano N. 2015. Membrane made of cellulose acetate with polyacrylic acid reinforced with carbon nanotubes and its applicability for chromium removal. Int J Polym Sci. 2015:1–12. doi: 10.1155/2015/320631.
  • Schilling M, Bouchard M, Khanjian H, Learner T, Phenix A, Rivenc R. 2010. Application of chemical and thermal analysis methods for studying cellulose ester plastics. Acc Chem Res. 43(6):888–896. doi: 10.1021/ar1000132.
  • Tsioptsias C, Foukas GP, Papaioannou S, Tzimpilis E, Tsivintzelis I. 2022. On the thermochemical transition depression of cellulose acetate composite membranes. Polymers. 14(16):3434. doi: 10.3390/polym14163434.
  • Zhang C, Vora LK, Tekko IA, Volpe-Zanutto F, Peng K, Paredes AJ, McCarthy HO, Donnelly RF. 2023. Development of dissolving microneedles for intradermal delivery of the long-acting antiretroviral drug bictegravir. Int J Pharm. 642:123108. doi: 10.1016/j.ijpharm.2023.123108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.