984
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Process optimization and characterization of physicochemical properties of freeze-dried pineapple snacks enriched with propolis

ORCID Icon &
Pages 2693-2715 | Received 06 Apr 2023, Accepted 27 Jul 2023, Published online: 12 Sep 2023

References

  • Geneva: World Health Organization (WHO). Global nutrition policy review 2016–2017: country progress in creating enabling policy environments for promoting healthy diets and nutrition. 2020; pp 797.
  • Featherstone, S. Jams, jellies, and related products, S. Featherstone (Editor), A Complete Course in Canning and Related Processes (Fourteenth Edition), Elsevier, 2016; pp 313–349.
  • Zhang, Q.; Jin, K.; Chen, B.; Liu, R.; Cheng, S.; Zhang, Y.; Lu, J. Overnutrition Induced Cognitive Impairment: Insulin Resistance, Gut-Brain Axis, and Neuroinflammation. Front. Neurosci. 2022, 6, 884579. DOI: 10.3389/fnins.2022.884579.
  • Dominguez, L. J.; Veronese, N.; Baiamonte, E.; Guarrera, M.; Parisi, A.; Ruffolo, C.; Tagliaferri, F.; Barbagallo, M. Healthy Aging and Dietary Patterns. Nutrients. 2022, 14(4), 889–911. DOI: 10.3390/nu14040889.
  • Chen, K.; Zhang, M.; Bhandari, B.; Sun, J.; Chen, J. Novel Freeze Drying Based Technologies for Production and Development of Healthy Snacks and Meal Replacement Products with Special Nutrition and Function: A Review, Dry. Technol. 2022, 40(8), 1582–1597. DOI: 10.1080/07373937.2021.1967375.
  • Donno, D.; Mellano, M. G.; Riondato, I.; De Biaggi, M.; Andriamaniraka, H.; Gamba, G.; Beccaro, G. L. Traditional and Unconventional Dried Fruit Snacks as a Source of Health-Promoting Compounds. Antioxidants. 2019, 8(9), 396–411. DOI: 10.3390/antiox8090396.
  • Tylewicz, U.; Nowacka, M.; Rybak, K.; Drozdzal, K.; Dalla Rosa, M.; Mozzon, M. Design of Healthy Snack Based on Kiwifruit. Molecules. 2020, 25(14), 3309–3321. DOI: 10.3390/molecules25143309.
  • Ciurzyńska, A.; Cieśluk, P.; Barwińska, M.; Marczak, W.; Ordyniak, A.; Lenart, A.; Janowicz, M. Eating Habits and Sustainable Food Production in the Development of Innovative “Healthy” Snacks. Sustainability. 2019, 11(10), 2800. DOI: 10.3390/su11102800.
  • Grasso, S. Extruded Snacks from Industrial By-Products: A Review. Trends Food Sci. Technol. 2020, 99, 284–294. DOI: 10.1016/j.tifs.2020.03.012.
  • Karwacka, M.; Ciurzyńska, A.; Galus, S.; Janowicz, M. Freeze-Dried Snacks Obtained from Frozen Vegetable By-Products and Apple Pomace – Selected Properties, Energy Consumption and Carbon Footprint. Innov. Food Sci. Emerg. Technol. 2022, 77, 102949. DOI: 10.1016/j.ifset.2022.102949.
  • Izli, N.; Izli, G.; Taskin, O. Impact of Different Drying Methods on the Drying Kinetics, Color, Total Phenolic Content and Antioxidant Capacity of Pineapple. CYTA J. Food. 2018, 16(1), 213–221. DOI: 10.1080/19476337.2017.1381174.
  • Lu, X. H.; Sun, D. Q.; Wu, Q. S.; Liu, S. H.; Sun, G. M. Physico-Chemical Properties, Antioxidant Activity and Mineral Contents of Pineapple Genotypes Grown in China. Molecules. 2014, 19(6), 8518–8532. DOI: 10.3390/molecules19068518.
  • Rodríguez, Ó.; Gomes, W.; Rodrigues, S.; Fernandes, F. A. N. Effect of Acoustically Assisted Treatments on Vitamins, Antioxidant Activity, Organic Acids and Drying Kinetics of Pineapple. Ultrason. Sonochem. 2017, 35(Pt A), 92–102. DOI: 10.1016/j.ultsonch.2016.09.006.
  • Mhatre, M.; Tilak-Jain, J.; De, S.; Devasagayam, T. P. A. Evaluation of the Antioxidant Activity of Non-Transformed and Transformed Pineapple: A Comparative Study. Food. Chem. Toxicol. 2009, 47(11), 2696–2702. DOI: 10.1016/j.fct.2009.06.031.
  • Yuris, A.; Siow, L. F. A Comparative Study of the Antioxidant Properties of Three Pineapple (Ananas Comosus L.) Varieties. J. Food Stud. 2014, 3(1), 40–56. DOI: 10.5296/jfs.v3i1.4995.
  • Ucak, I.; Khalily, R.; Carrillo, C.; Tomasevic, I.; Barba, F. J. Potential of Propolis Extract as a Natural Antioxidant and Antimicrobial in Gelatin Films Applied to Rainbow Trout (Oncorhynchus Mykiss) Fillets. Foods. 2020, 9, 1584. DOI: 10.3390/foods9111584.
  • Forma, E.; Bryś, M. Anticancer Activity of Propolis and Its Compounds. Nutrients. 2021, 13(8), 2594–2615. DOI: 10.3390/nu13082594.
  • Boufadi, M. Y.; Soubhye, J.; Van Antwerpen, P. Anti-Inflammatory, Antioxidant Effects, and Bioaccessibility of Tigzirt Propolis. J. Food Biochem. 2021, 45(4), e13663. DOI: 10.1111/jfbc.13663.
  • An, J. Y.; Kim, C.; Park, N. R.; Jung, H. S.; Koo, T. S.; Yuk, S. H.; Lee, E. H.; Cho, S. H. Clinical Anti-Aging Efficacy of Propolis Polymeric Nanoparticles Prepared by a Temperature-Induced Phase Transition Method. J. Cosmet. Dermatol. 2022, 21(9), 4060–4071. DOI: 10.1111/jocd.14740.
  • Pant, K.; Thakur, M.; Chopra, H. K.; Nanda, V. Encapsulated Bee Propolis Powder: Drying Process Optimization and Physicochemical Characterization. LWT - Food Sci. Technol. 2022, 155, 112956. DOI: 10.1016/j.lwt.2021.112956.
  • Sagar, V. R.; Suresh Kumar, P. Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2010, 47(1), 15–26. DOI: 10.1007/s13197-010-0010-8.
  • Bourdoux, S.; Li, D.; Rajkovic, A.; Devlieghere, F.; Uyttendaele, M. Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2016, 15(6), 1056–1066. DOI: 10.1111/1541-4337.12224.
  • Belice, T.; Yüksel, A.; Akçiçek, S. F. Importance of Dried Fruits and Vegetables in the Older Adults. Eur. J. Geriatr. Gerontol. 2022, 2(2), 28–35. DOI: 10.4274/ejgg.galenos.2020.280.
  • Zhu, J.; Liu, Y.; Zhu, C.; Wei, M. Effects of Different Drying Methods on the Physical Properties and Sensory Characteristics of Apple Chip Snacks. LWT - Food Sci. Technol. 2022, 154, 112829. DOI: 10.1016/j.lwt.2021.112829.
  • Šturm, L.; Črnivec, I. G. O.; Istenič, K.; Ota, A.; Megušar, P.; Slukan, A.; Humar, M.; Levic, S.; Nedović, V.; Kopinč, R., et al. Encapsulation of Non-Dewaxed Propolis by Freeze-Drying and Spray-Drying Using Gum Arabic, Maltodextrin and Inulin as Coating Materials. Food Bioprod. Process. 2019, 116, 196–211. DOI: 10.1016/j.fbp.2019.05.008.
  • Joshi, A.; Rupasinghe, H.; Khanizadeh, S. Impact of Drying Processes on Bioactive Phenolics, Vitamin C and Antioxidant Capacity of Red-Fleshed Apple Slices. J. Food Process Preserv. 2011, 35(4), 453–457. DOI: 10.1111/j.1745-4549.2010.00487.x.
  • Hafezi, N.; Sheikhdavoodi, M. J.; Sajadiye, S. M. The Effect of Drying Kinetic on Shrinkage and Colour of Potato Slices in the Vacuum- Infrared Drying Method. Int. J. Agr. Food Res. 2015, 4(1), 24–31. DOI: 10.24102/ijafr.v4i1.476.
  • Nowak, D.; Jakubczyk, E. The Freeze-Drying of Foods-The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods. 2020, 9, 1488.
  • Kahraman, O.; Malvandi, A.; Vargas, L.; Feng, H. Drying Characteristics and Quality Attributes of Apple Slices Dried by a Non-Thermal Ultrasonic Contact Drying Method. Ultrason. Sonochem. 2021, 73, 105510. DOI: 10.1016/j.ultsonch.2021.105510.
  • Assegehegn, G.; Brito-de la Fuente, E.; Franco, J. M.; Gallegos, C. The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance. J. Pharm. Sci. 2019, 108(4), 1378–1395. DOI: 10.1016/j.xphs.2018.11.039.
  • Archaina, D.; Sosa, N.; Rivero, R.; Schebor, C. Freeze-Dried Candies from Blackcurrant (Ribes Nigrum L.) and Yoghurt. Physicochemical and Sensorial Characterization. LWT - Food Sci. Technol. 2019, 100, 444–449. DOI: 10.1016/j.lwt.2018.10.049.
  • Çavdaroğlu, E.; Yemenicioğlu, A. Utilization of Stalk Waste Separated During Processing of Sun-Dried Figs (Ficus Carica) as a Source of Pectin: Extraction and Determination of Molecular and Functional Properties. LWT. 2022, 154, 112624. DOI: 10.1016/j.lwt.2021.112624.
  • Garcia Loredo, A. B.; Guerrero, S. N. Correlation Between Instrumental and Sensory Ratings by Evaluation of Some Texture Reference Scales. Int. J. Food Sci. 2011, 46(9), 1977–1985. DOI: 10.1111/j.1365-2621.2011.02709.x.
  • Khalloufi, S.; Ratti, C. Quality Deterioration of Freeze-Dried Foods as Explained by Their Glass Transition Temperature and Internal Structure. J. Food Sci. 2003, 68(3), 892–903. DOI: 10.1111/j.1365-2621.2003.tb08262.x.
  • Fang, Z.; Bhandari, B. Spray Drying, Freeze Drying and Related Processes for Food Ingredient and Nutraceutical Encapsulation. In Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals; Nissim, G. McClements, D. J., Eds.; WP Woodhead Publishing: Oxford, 2012; pp. 73–109. DOI: 10.1533/9780857095909.2.73.
  • Salvador, A.; Camacho, M. D. M.; Martínez-Navarrete, N. Influence of Formulation on the Quality and Stability of a Freeze-Dried Mandarin Product. Curr. Res. Food Sci. 2022, 20, 1047–1053. DOI: 10.1016/j.crfs.2022.06.004.
  • Rezvankhah, A.; Emam‐Djomeh, Z.; Safari, M.; Salami, M.; Askari, G. Investigating the Effects of Maltodextrin, Gum Arabic, and Whey Protein Concentrate on the Microencapsulation Efficiency and Oxidation Stability of Hemp Seed Oil. J. Food Process Preserv. 2022, 46(6), e16554. DOI: 10.1111/jfpp.16554.
  • Cemeroğlu, B. S. Gıda Analizleri. Bizim Grup Basıdmevi, Ankara, Türkiye, 2013, p. 480. ISBN:978-605-63419-3-9.
  • Oikonomopoulou, V. P.; Krokida, M. K. Structural Properties of Dried Potatoes, Mushrooms, and Strawberries as a Function of Freeze-Drying Pressure. Dry. Technol. 2012, 30(4), 351–361. DOI: 10.1080/07373937.2011.639475.
  • Nielsen, S.S. Food Analysis. 4th Edition, Food Science Text Series, Springer, USA, 2010, p. 602. http://dx.doi.org/10.1007/978-1-4419-1478-1.
  • Sponton, O. E.; Perez, A. A.; Osella, C.; Cuffia, F.; Fenoglio, C.; Piagentini, A.; Santiago, L. G. Squalene Encapsulation by Emulsification and Freeze-Drying Process: Effects on Bread Fortification. J. Food Sci. 2023, 88(6), 2523–2535. DOI: 10.1111/1750-3841.16576.
  • Sakooei-Vayghan, R.; Peighambardoust, S. H.; Javad Hesari, J.; Soltanzadeh, M.; Peressini, D. Properties of Dried Apricots Pretreated by Ultrasound-Assisted Osmotic Dehydration and Application of Active Coatings. Food Technol. Biotechnol. 2020, 58(3), 249–259. DOI: 10.17113/ftb.58.03.20.6471.
  • Savas, E. The Modelling of Convective Drying Variables’ Effects on the Functional Properties of Sliced Sweet Potatoes. Foods. 2022, 11(5), 741–761. DOI: 10.3390/foods11050741.
  • Bardakçı, B.; Seçilmiş, H. Investigation of Chemical Composition of Rose Oil from Isparta Region by GC-MS and FTIR Spectroscopy Technique. SDUFASJS. 2006, 1, 64–69.
  • Altuğ, T; Elmacıd, Y. Gıddalarda Duyusal Değerlendirme. 2. Edtiiton, Sidas Medya, İzmir, Türkiye, 2011, p. 134.
  • Golpira, F.; Maftoonazad, N.; Ramaswamy, H. S. Evaluation of Freeze Drying and Electrospinning Techniques for Saffron Encapsulation and Storage Stability of Encapsulated Bioactives. J. Compos. Sci. 2021, 5(12), 326. DOI: 10.3390/jcs5120326.
  • Murali, S.; Kar, A.; Mohapatra, D.; Kalia, P. Encapsulation of Black Carrot Juice Using Spray and Freeze Drying. Food Sci. Technol. Int. 2015, 21(8), 604–612. DOI: 10.1177/1082013214557843.
  • Zuidam, N. J.; Shimoni, E. Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Springer New York: Berlin/Heidelberg, Germany, 2010 pp. 3–29. DOI: 10.1007/978-1-4419-1008-0_2.
  • Mahdavi, S. A.; Jafari, S. M.; Assadpoor, E.; Dehnad, D. Microencapsulation Optimization of Natural Anthocyanins with Maltodextrin, Gum Arabic and Gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. DOI: 10.1016/j.ijbiomac.2016.01.011.
  • Popa, V. M.; Gruia, A.; Raba, D.; Dumbrava, D.; Moldovan, C.; Bordean, D.; Mateescu, C. Fatty Acids Composition and Oil Characteristics of Linseed (Linum Usitatissimum L.) from Romania. J. Agroaliment. Processes Technol. 2012, 18, 136–140.
  • Bayrak, A.; Kiralan, M.; Ipek, A.; Arslan, N.; Cosge, B.; Khawar, K. M. Fatty Acid Compositions of Linseed (LinumUsitatissimum L.) Genotypes of Different Origin Cultivated in Turkey. Biotechnol. Biotechnol. Equip. 2010, 24(2), 1836–1842. DOI: 10.2478/V10133-010-0034-2.
  • Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihaget, M. Flax and Flaxseed Oil: An Ancient Medicine & Modern Functional Food. J. Food Sci. Technol. 2014, 51(9), 1633–1653. DOI: 10.1007/s13197-013-1247-9.
  • Hong, K.; Chen, L.; Gu, H.; Zhang, X.; Chen, J.; Nile, S. H.; Hu, M.; Gong, D.; Song, K.; Hou, X., et al. Novel Insight into the Relationship Between Metabolic Profile and Fatty Acid Accumulation Altering Cellular Lipid Content in Pineapple Fruits at Different Stages of Maturity. J. Agric. Food. Chem. 2021, 69(30), 8578–8589. DOI: 10.1021/acs.jafc.1c02658.
  • Ciurzyńska, A.; Popkowicz, P.; Galus, S.; Janowicz, M. Innovative Freeze-Dried Snacks with Sodium Alginate and Fruit Pomace (Only Apple or Only Chokeberry) Obtained within the Framework of Sustainable Production. Molecules. 2022, 27(10), 3095. DOI: 10.3390/molecules27103095.
  • Jakubczyk, E.; Kamińska-Dwórznicka, A.; Ostrowska-Ligęza, E. The Effect of Composition, Pre-Treatment on the Mechanical and Acoustic Properties of Apple Gels and Freeze-Dried Materials. Gels. 2022, 8(2), 110–128. DOI: 10.3390/gels8020110.
  • Ratti, C. Hot Air and Freeze-Drying of High-Value Foods: A Review. J. Food Eng. 2021, 49, 311–319. DOI: 10.1016/S0260-8774(00)00228-4.
  • Ciurzyńska, A.; Galus, S.; Karwacka, M.; Janowicz, M. The Sorption Properties, Structure and Shrinkage of Freeze-Dried Multi-Vegetable Snack Bars in the Aspect of the Environmental Water Activity. LWT - Food Sci. Technol. 2022, 171, 114090. DOI: 10.1016/j.lwt.2022.114090.
  • Egas-Astudillo, L. A.; Martínez-Navarrete, N.; Camacho, M. M. Impact of Biopolymers Added to a Grapefruit Puree and Freeze-Drying Shelf Temperature on Process Time Reduction and Product Quality. Food Bioprod. Process. 2020, 120, 143–150.
  • Ciurzyńska, A.; Marczak, W.; Lenart, A.; Janowicz, M. Production of Innovative Freeze-Dried Vegetable Snack with Hydrocolloids in Terms of Technological Process and Carbon Footprint Calculation. Food Hydrocoll. 2020, 108, 105993. DOI: 10.1016/j.foodhyd.2020.105993.
  • Oyinloye, T. M.; Yoon, W. B. Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review. Processes. 2020, 8(3), 354. DOI: 10.3390/pr8030354.
  • Athmaselvi, K. A.; Kumar, C.; Balasubramanian, M.; Roy, I. Thermal, Structural, and Physical Properties of Freeze-Dried Tropical Fruit Powder. J. Food Process. 2014, 3, 1–10. DOI: 10.1155/2014/524705.
  • Jiamjariyatam, R. Development of Ready-To-Eat Rice Starch-Based Puffed Products by Coupling Freeze-Drying and Microwave. Int. J. Food Sci. Technol. 2016, 51(2), 444–452. DOI: 10.1111/ijfs.12989.
  • Palzer, S.; Dubois, C.; Gianfrancesco, A. Generation of Product Structures During Drying of Food Products. Dry. Technol. 2012, 30(1), 97–105. DOI: 10.1080/07373937.2011.622060.
  • Telis, V. R. N.; Martínez-Navarrete, N. Biopolymer Engineering in Food Processing, 1st ed.; CRC Press: Florida, 2012; (Chapter 8). DOI: 10.1201/b12048.
  • Silva-Espinoza, M. A.; Salvador, A.; Camacho, M. D. M.; Martínez-Navarrete, N. Impact of Freeze-Drying Conditions on the Sensory Perception of a Freeze-Dried Orange Snack. J. Sci. Food Agric. 2021, 101, 4585–4590. DOI: 10.1002/jsfa.11101.
  • Townrow, S.; Roussenova, M.; Giardiello, M.; Alam, A.; Ubbink, J. Specific Volume-Hole Volume Correlations in Amorphous Carbohydrates: Effect of Temperature, Molecular Weight, and Water Content. J. Phys. Chem B. 2010, 114, 1568–1578. DOI: 10.1021/jp908462k.
  • Malik, N.; Gouseti, O.; Bakalis, S. Effect of Freezing on Microstructure and Reconstitution of Freeze-Dried High Solid Hydrocolloid-Based Systems. Food Hydrocoll. 2018, 83, 473–484. DOI: 10.1016/j.foodhyd.2018.05.008.
  • Marques, L. G.; Prado, M. M.; Freire, J. T. Rehydration Characteristics of Freeze-Dried Tropical Fruits. LWT - Food Sci. Technol. 2009, 42(7), 1232–1237. DOI: 10.1016/j.lwt.2009.02.012.
  • Serna-Cock, L.; Vargas-Muñoz, D. P.; Aponte, A. A. Structural, Physical, Functional and Nutraceutical Changes of Freeze-Dried Fruit. Afr. J. Biotechnol. 2015, 14, 442–450. DOI: 10.5897/AJB2014.14189.
  • Wan, J.; Ding, Y.; Zhou, G.; Luo, S.; Liu, C.; Liu, F. Sorption Isotherm and State Diagram for Indica Rice Starch with and without Soluble Dietary fiberJ. Cereal Sci. 2018, 80, 44–49. DOI: 10.1016/j.jcs.2018.01.003.
  • Malik, N.; Muttakin, S.; Lopez-Quiroga, E.; Watson, N. J.; Fryer, P. J.; Bakalis, S.; Gouseti, O. Microstructure and Reconstitution of Freeze-Dried Gum Arabic at a Range of Concentrations and Primary Drying Temperatures. Food Hydrocoll. 2020, 104, 105712. DOI: 10.1016/j.foodhyd.2020.105712.
  • Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and Physical Properties of Blueberries, Tart Cherries, Strawberries, and Cranberries as Affected by Different Drying Methods. Food Chem. 2018, 262, 242–250. DOI: 10.1016/j.foodchem.2018.04.047.
  • Djendoubi Mrad, N.; Bonazzi, C.; Boudhrioua, N.; Kechaou, N.; Courtois, F. Influence of Sugar Composition on Water Sorption Isotherms and on Glass Transition in Apricots. J. Food Eng. 2018, 111, 403–411. DOI: 10.1016/j.jfoodeng.2012.02.001.
  • Homer, S.; Kelly, M.; Day, L. Determination of the Thermo-Mechanical Properties in Starch and Starch/Gluten Systems at Low Moisture Content – a Comparison of DSC and TMA. Carbohydr. Polym. 2014, 108, 1–9. DOI: 10.1016/j.carbpol.2014.02.049.
  • Goula, A. M.; Adamopoulos, K. G. Effect of Maltodextrin Addition During Spray Drying of Tomato Pulp in Dehumidified Air: I. Drying Kinetics and Product Recovery. Drying Technol. 2008, 26, 714–725. DOI: 10.1080/07373930802046369.
  • Uscanga, M. A.; Salvador, A.; Camacho, M. M.; Martínez-Navarrete, N. Impact of Freeze-Drying Shelf Temperature on the Bioactive Compounds, Physical Properties and Sensory Evaluation of a Product Based on Orange Juice. Int. J. Food Sci. 2021, 56, 5409–5416. DOI: 10.1111/ijfs.15086.
  • Valentina, V.; Pratiwi, A. R.; Hsiao, P. Y.; Tseng, H. T.; Hsieh, J. F.; Chen, C. C. Sensorial Characterization of Foods Before and After Freeze-Drying. Austin. Food Sci. 2016, 1, 1027.