1,237
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Lipidomics: a comprehensive review in navigating the functional quality of animal and fish products

ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Pages 3115-3136 | Received 08 Jun 2023, Accepted 22 Aug 2023, Published online: 09 Nov 2023

References

  • Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid Classification, Structures and Tools. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2011, 1811, 637–647. DOI: 10.1016/J.BBALIP.2011.06.009.
  • Goto-Inoue, N.; Hayasaka, T.; Zaima, N.; Setou, M. Imaging Mass Spectrometry for Lipidomics. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2011, 1811, 961–969. DOI: 10.1016/J.BBALIP.2011.03.004.
  • Kliman, M.; May, J. C.; McLean, J. A. Lipid Analysis and Lipidomics by Structurally Selective Ion Mobility-Mass Spectrometry. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2011, 1811, 935–945. DOI: 10.1016/J.BBALIP.2011.05.016.
  • Hu, T.; Zhang, J. L. Mass-Spectrometry-Based Lipidomics. J. Sep. Sci. 2018, 41, 351–372. DOI: 10.1002/JSSC.201700709.
  • Chen, H.; Wei, F.; Dong, X. Y.; Xiang, J. Q.; Quek, S. Y.; Wang, X. Lipidomics in Food Science. Curr. Opin. Food Sci. 2017, 16, 80–87. DOI: 10.1016/J.COFS.2017.08.003.
  • Chien, H. J.; Zheng, Y. F.; Wang, W. C.; Kuo, C. Y.; Hsu, Y. M.; Lai, C. C. Determination of Adulteration, Geographical Origins, and Species of Food by Mass Spectrometry. Mass Spectrom. Rev. 2022, e21780. DOI: 10.1002/MAS.21780.
  • Wu, B.; Wei, F.; Xu, S.; Xie, Y.; Lv, X.; Chen, H.; Huang, F. Mass Spectrometry-Based Lipidomics as a Powerful Platform in Foodomics Research. Trends Food Sci. Technol. 2021, 107, 358–376. DOI: 10.1016/J.TIFS.2020.10.045.
  • Wang, Y.; Wang, J.; Li, H.; Xiao, Y.; Harlina, P. W.; Geng, F. Quantitative Lipidomic Analysis of Chicken Egg Yolk During Its Formation. J. Sci. Food Agric. 2022, 103(8), 3997–4005. DOI: 10.1002/jsfa.12354.
  • Maritha, V.; Harlina, P. W.; Musfiroh, I.; Gazzali, A. M.; Muchtaridi, M. The Application of Chemometrics in Metabolomic and Lipidomic Analysis Data Presentation for Halal Authentication of Meat Products. Molecules. 2022, 27, 7571. DOI: 10.3390/MOLECULES27217571.
  • Li, Q.; Zhao, Y.; Zhu, D.; Pang, X.; Liu, Y.; Frew, R.; Chen, G. Lipidomics Profiling of Goat Milk, Soymilk and Bovine Milk by UPLC-Q-Exactive Orbitrap Mass Spectrometry. Food Chem. 2017, 224, 302–309. DOI: 10.1016/J.FOODCHEM.2016.12.083.
  • Teng, Z.; Wang, L.; Du, H.; Yang, G.; Fu, T.; Lian, H.; Sun, Y.; Liu, S.; Zhang, L.; Gao, T. Metabolomic and Lipidomic Approaches to Evaluate the Effects of Eucommia Ulmoides Leaves on Milk Quality and Biochemical Properties. Front. Vet. Sci. 2021, 8, 518. DOI: 10.3389/fvets.2021.644967.
  • Moussa, F.; Mokh, S.; Doumiati, S.; Barboni, B.; Bernabò, N.; Al Iskandarani, M. LC-MS/MS Method for the Determination of Hormones: Validation, Application and Health Risk Assessment in Various Bovine Matrices. Food. Chem. Toxicol. 2020, 138, 111204. DOI: 10.1016/J.FCT.2020.111204.
  • Song, Y.; Cai, C.; Song, Y.; Sun, X.; Liu, B.; Xue, P.; Zhu, M.; Chai, W.; Wang, Y.; Wang, C., et al. A Comprehensive Review of Lipidomics and Its Application to Assess Obtained from Farm Animals. Food Sci. Anim. Resour. 2022, 42, 1. DOI: 10.5851/KOSFA.2021.E59.
  • Dreier, D. A.; Bowden, J. A.; Aristizabal-Henao, J. J.; Denslow, N. D.; Martyniuk, C. J. Ecotoxico-Lipidomics: An Emerging Concept to Understand Chemical-Metabolic Relationships in Comparative Fish Models. Comp. Biochem. Physiol. Part D Genomics Proteomics. 2020, 36, 100742. DOI: 10.1016/J.CBD.2020.100742.
  • Costa , T. J.; Domingues, M. R. M.; Alves, E.An Overview on Lipids in Nuts and Oily Fruits: Oil Content, Lipid Composition, Health Effects, Lipidomic Fingerprinting and New Biotechnological Applications of Their by-Products. Crit. Rev. Food Sci. Nutr. 2023, 0, 1–9. DOI:10.1080/10408398.2023.2208666.
  • Han, X.; Gross, R. W. Global Analyses of Cellular Lipidomes Directly from Crude Extracts of Biological Samples by ESI Mass Spectrometry: A Bridge to Lipidomics. J. Lipid Res. 2003, 44, 1071–1079. DOI: 10.1194/jlr.R300004-JLR200.
  • Li, J.; Vosegaard, T.; Guo, Z. Applications of Nuclear Magnetic Resonance in Lipid Analyses: An Emerging Powerful Tool for Lipidomics Studies. Prog. lipid res. 2017, 68, 37–56. DOI: 10.1016/J.PLIPRES.2017.09.003.
  • Putri, S. P.; Yamamoto, S.; Tsugawa, H.; Fukusaki, E. Current Metabolomics: Technological Advances. J. Biosci. Bioeng. 2013, 116, 9–16. DOI: 10.1016/J.JBIOSC.2013.01.004.
  • Jia, W.; Di, C.; Shi, L. Applications of Lipidomics in Goat Meat Products: Biomarkers, Structure, Nutrition Interface and Future Perspectives. J. Proteomics. 2023, 270, 104753. DOI: 10.1016/j.jprot.2022.104753.
  • Feingold, K. R.; Grunfeld, C. Introduction to Lipids and Lipoproteins. Endotext. 2021.
  • Han, X.; Gross, R. W. Shotgun Lipidomics: Electrospray Ionization Mass Spectrometric Analysis and Quantitation of Cellular Lipidomes Directly from Crude Extracts of Biological Samples. Mass Spectrom. Rev. 2005, 24, 367–412. DOI: 10.1002/MAS.20023.
  • Ramos-Martín, F.; D’Amelio, N. Biomembrane Lipids: When Physics and Chemistry Join to Shape Biological Activity. Biochimie. 2022, 203, 118–138. DOI: 10.1016/J.BIOCHI.2022.07.011.
  • Arish, M.; Husein, A.; Kashif, M.; Sandhu, P.; Hasnain, S. E.; Akhter, Y.; Rub, A. Orchestration of Membrane Receptor Signaling by Membrane Lipids. Biochimie. 2015, 113, 111–124. DOI: 10.1016/J.BIOCHI.2015.04.005.
  • Watson, H. Biological Membranes. Essays Biochem. 2015, 59, 43–70. DOI: 10.1042/bse0590043.
  • Lee, D. E.; Lew, M. G.; Woodbury, D. J. Vesicle Fusion to Planar Membranes is Enhanced by Cholesterol and Low Temperature. Chem. Phys. Lipids. 2013, 166, 45–54. DOI: 10.1016/J.CHEMPHYSLIP.2012.11.004.
  • Khelashvili, G.; Harries, D. How Sterol Tilt Regulates Properties and Organization of Lipid Membranes and Membrane Insertions. Chem. Phys. Lipids. 2013, 169, 113–123. DOI: 10.1016/J.CHEMPHYSLIP.2012.12.006.
  • Bordenave, N.; Hamaker, B. R.; Ferruzzi, M. G. Nature and Consequences of Non-Covalent Interactions Between Flavonoids and Macronutrients in Foods. Food Funct. 2013, 5, 18–34. DOI: 10.1039/C3FO60263J.
  • Mcclements, D. J.; Öztürk, B.; Rodríguez-Alcalá, M.; Pimentel, L.; Vidigal, S. Utilization of Nanotechnology to Improve the Handling, Storage and Biocompatibility of Bioactive Lipids in Food Applications. Foods. 2021, 10, 365. DOI: 10.3390/FOODS10020365.
  • Cui, L.; Decker, E. A. Phospholipids in Foods: Prooxidants or Antioxidants? J. Sci. Food Agric. 2016, 96, 18–31. DOI: 10.1002/JSFA.7320.
  • Osborn, H. T.; Akoh, C. C. Structured Lipids-Novel Fats with Medical, Nutraceutical, and Food Applications. Compr. Rev. Food Sci. Food Saf. 2002, 1, 110–120. DOI: 10.1111/J.1541-4337.2002.TB00010.X.
  • Saini, R. K.; Prasad, P.; Shang, X.; Keum, Y. S. Advances in Lipid Extraction Methods—A Review. IJMS. 2021, 22(24), 13643. DOI: 10.3390/IJMS222413643.
  • Taylor, D. D.; Shah, S. Methods of Isolating Extracellular Vesicles Impact Down-Stream Analyses of Their Cargoes. Methods. 2015, 87, 3–10. DOI: 10.1016/J.YMETH.2015.02.019.
  • Hewavitharana, G. G.; Perera, D. N.; Navaratne, S. B.; Wickramasinghe, I. Extraction Methods of Fat from Food Samples and Preparation of Fatty Acid Methyl Esters for Gas Chromatography: A Review. Arab. J. Chem. 2020, 13, 6865–6875. DOI: 10.1016/J.ARABJC.2020.06.039.
  • Yau, Y. K.; Ooi, C. W.; Ng, E. P.; Lan, J. C. W.; Ling, T. C.; Show, P. L. Current Applications of Different Type of Aqueous Two-Phase Systems. Bioresour. Bioprocess. 2015, 2, 1–13. DOI: 10.1186/S40643-015-0078-0/TABLES/1.
  • Zhao, L.; Zhang, Y.; Pan, Z.; Venkitasamy, C.; Zhang, L.; Xiong, W.; Guo, S.; Xia, H.; Liu, W. Effect of Electron Beam Irradiation on Quality and Protein Nutrition Values of Spicy Yak Jerky. LWT. 2018, 87, 1–7. DOI: 10.1016/j.lwt.2017.08.062.
  • Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer.” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and Towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 1–21. DOI: 10.3390/ijms18040708.
  • Olkiewicz, M.; Caporgno, M. P.; Fortuny, A.; Stüber, F.; Fabregat, A.; Font, J.; Direct Liquid–Liquid, B. C. Extraction of Lipid from Municipal Sewage Sludge for Biodiesel Production. Fuel Process. Technol. 2014, 128, 331–338. DOI: 10.1016/J.FUPROC.2014.07.041.
  • Züllig, T.; Trötzmüller, M.; Köfeler, H. C. Lipidomics from Sample Preparation to Data Analysis: A Primer. Anal. Bioanal. Chem. 2019. DOI: 10.1007/S00216-019-02241-Y.
  • Harlina, P. W.; Maritha, V.; Musfiroh, I.; Huda, S.; Sukri, N.; Muchtaridi, M. Possibilities of Liquid Chromatography Mass Spectrometry (LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat Products: A Mini Review. Food Sci. Anim. Resour. 2022, 42, 744–761. DOI: 10.5851/KOSFA.2022.E37.
  • Harrieder, E. M.; Kretschmer, F.; Böcker, S.; Witting, M. Art of Separation Methods Used in LC-MS Based Metabolomics and Lipidomics. J. Chromatogr. B. 2022, 1188, 123069. DOI: 10.1016/J.JCHROMB.2021.123069.
  • Lee, S. H.; Tang, C. H.; Lin, W. Y.; Chen, K. H.; Liang, H. J.; Cheng, T. J.; Lin, C. Y. LC-MS-Based Lipidomics to Examine Acute Rat Pulmonary Responses after Nano- and Fine-Sized ZnO Particle Inhalation Exposure. 2018, 12, 439–452. doi:10.1080/17435390.2018.1458918.
  • Taguchi, R.; Precise, I. M. Global Identification of Phospholipid Molecular Species by an Orbitrap Mass Spectrometer and Automated Search Engine Lipid Search. J. Chromatogr. A. 2010, 1217, 4229–4239. DOI: 10.1016/J.CHROMA.2010.04.034.
  • Marable, C. A.; Frank, C. L.; Seim, R. F.; Hester, S.; Henderson, W. M.; Chorley, B.; Shafer, T. J. Integrated Omic Analyses Identify Pathways and Transcriptomic Regulators Associated with Chemical Alterations of in Vitro Neural Network Formation. Toxicol. Sci. 2022, 186, 118–133. DOI: 10.1093/TOXSCI/KFAB151.
  • Monfort-Pires, M.; Lamichhane, S.; Alonso, C.; Egelandsdal, B.; Orešič, M.; Jordahl, V. O.; Skjølsvold, O.; Pérez-Ruiz, I.; Blanco, M. E.; Skeie, S., et al. Classification of Common Food Lipid Sources regarding Healthiness Using Advanced Lipidomics: A Four-Arm Crossover Study. Int. J. Mol. Sci. 2023, 24, 4941. DOI: 10.3390/IJMS24054941/S1.
  • Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F. J.; Zhang, W.; Lorenzo, J. M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants. 2019, 8. DOI: 10.3390/ANTIOX8100429.
  • Nogoy, K. M. C.; Sun, B.; Shin, S.; Lee, Y.; Li, X. Z.; Choi, S. H.; Park, S. Fatty Acid Composition of Grain- and Grass-Fed Beef and Their Value and Health Implication. Food Sci. Anim. Resour. 2022, 42, 18. DOI: 10.5851/KOSFA.2021.E73.
  • Pisano, M. B.; Scano, P.; Murgia, A.; Cosentino, S.; Metabolomics, C. P. Microbiological Profile of Italian Mozzarella Cheese Produced with Buffalo and Cow Milk. Food Chem. 2016, 192, 618–624. DOI: 10.1016/J.FOODCHEM.2015.07.061.
  • Li, C.; Ozturk-Kerimoglu, B.; He, L.; Zhang, M.; Pan, J.; Liu, Y.; Zhang, Y.; Huang, S.; Wu, Y.; Jin, G. Advanced Lipidomics in the Modern Meat Industry: Quality Traceability, Processing Requirement, and Health Concerns. Front. Nutr. 2022, 9. DOI: 10.3389/FNUT.2022.925846.
  • Cai, Q.; Wu, Y.; Li, L.; Wang, Y.; Yang, X.; Lipid Oxidation, Z. Y. Fatty Acid Composition in Salt-Dried Yellow Croaker (Pseudosciaena Polyactis) during Processing. J. Ocean Univ. China. 2017, 16, 855–862. DOI: 10.1007/S11802-017-3233-8/METRICS.
  • Huang, X.; Ahn, D. U.; Oxidation, L. Its Implications to Meat Quality and Human Health. Food Sci. Biotechnol. 2019, 28, 1275–1285. DOI: 10.1007/S10068-019-00631-7/METRICS.
  • Feng, X.; Li, J.; Zhang, L.; Rao, Z.; Feng, S.; Wang, Y.; Liu, H.; Integrated Lipidomic, M. Q. Metabolomics Analysis Revealing the Effects of Frozen Storage Duration on Pork Lipids. Metabolites. 2022, 12, 977. DOI: 10.3390/METABO12100977/S1.
  • Liu, Y.; Guo, X.; Wang, N.; Lu, S.; Dong, J.; Qi, Z.; Zhou, J.; Wang, Q. Evaluation of Changes in Egg Yolk Lipids during Storage Based on Lipidomics through UPLC-MS/MS. Food Chem. 2023, 398, 133931. DOI: 10.1016/J.FOODCHEM.2022.133931.
  • Song, G.; Li, L.; Wang, H.; Zhang, M.; Yu, X.; Wang, J.; Xue, J.; Real-Time, S. Q. Assessing the Lipid Oxidation of Prawn (Litopenaeus Vannamei) during Air-Frying by IKnife Coupling Rapid Evaporative Ionization Mass Spectrometry. Food Control 2020, 111, 107066.
  • Jia, W.; Wu, X.; Zhang, R.; Shi, L. U. H. P. L. C.-Q. Orbitrap-Based Lipidomics Reveals Molecular Mechanism of Lipid Changes during Preservatives Treatment of Hengshan Goat Meat Sausages. Food Chem. 2022, 369, 130948, 10.1016/J.FOODCHEM.2021.130948.
  • Ma, J.; Liu, Y.; Li, P.; Wang, D.; Geng, Z.; Xu, W. Lipidomics Analysis of Sanhuang Chicken during Cold Storage Reveals Possible Molecular Mechanism of Lipid Changes. Food Chem. 2023, 135914.
  • Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of Poultry Meat in a Balanced Diet Aimed at Maintaining Health and Wellbeing: An Italian Consensus Document. SNF Swedish Nutr. Found. 2015, 59, 1–11. DOI: 10.3402/FNR.V59.27606.
  • Guo, X.; Shi, D.; Liu, C.; Huang, Y.; Wang, Q.; Wang, J.; Pei, L.; Lu, S. U. P. L. C.-M. S.-M. S. Based Lipidomics for the Evaluation of Changes in Lipids during Dry-Cured Mutton Ham Processing. Food Chem. 2022, 377, 131977. DOI: 10.1016/J.FOODCHEM.2021.131977.
  • He, X.; Wang, J.; Wang, Y.; Wang, B.; Zhang, J.; Geng, F. Quantitative Lipidomic Analysis of Egg Yolk, Yolk Granule, and Yolk Plasma. J. Food Compos. Anal. 2023, 115, 104880. DOI: 10.1016/J.JFCA.2022.104880.
  • Sergin, S.; Jambunathan, V.; Garg, E.; Rowntree, J. E.; Fenton, J. I.; Acid, F. Antioxidant Profile of Eggs from Pasture-Raised Hens Fed a Corn- and Soy-Free Diet and Supplemented with Grass-Fed Beef Suet and Liver. Foods. 2022, 11, 3404. DOI: 10.3390/FOODS11213404/S1.
  • Anderson, K. E. Comparison of Fatty Acid, Cholesterol, and Vitamin A and E Composition in Eggs from Hens Housed in Conventional Cage and Range Production Facilities. Poult. Sci. 2011, 90, 1600–1608. DOI: 10.3382/PS.2010-01289.
  • Vannice, G.; Rasmussen, H. Position of the Academy of Nutrition and Dietetics: Dietary Fatty Acids for Healthy Adults. J. Acad. Nutr. Diet. 2014, 114, 136–153. DOI: 10.1016/J.JAND.2013.11.001.
  • Harlina, P. W.; Ma, M.; Shahzad, R. Quantification of Lipidomics Profiling Using UPLC-QE-HESI- Lipid Analysis on the Salted Duck Egg Incorporated with Clove Extract. Eur. J. Lipid Sci. Technol. 2021, 123, 2000284. DOI: 10.1002/EJLT.202000284.
  • Ligen, Z.; Qian, W.; Liping, W.; Tenghao, W.; Jing, Q.; Junbo, L.; Huiyan, J.; Quality Evaluation, Y. W. Lipidomics Analysis of Salted Duck Egg Yolk under Low-Salt Pickling Process. Food Chem. X. 2022, 16, 100502. DOI: 10.1016/J.FOCHX.2022.100502.
  • Harlina, P. W.; Shahzad, R.; Ma, M.; Geng, F.; Wang, Q.; He, L.; Ding, S.; Qiu, N. Effect of Garlic Oil on Lipid Oxidation, Fatty Acid Profiles and Microstructure of Salted Duck Eggs. J. Food Process. Preserv. 2015, 39, 2897–2911. DOI: 10.1111/JFPP.12541.
  • Harlina, P. W.; Ma, M.; Shahzad, R.; Gouda, M. M.; Qiu, N. Effect of Clove Extract on Lipid Oxidation, Antioxidant Activity, Volatile Compounds and Fatty Acid Composition of Salted Duck Eggs. J. Food Sci. Technol. 2018, 55, 4719–4734. DOI: 10.1007/S13197-018-3367-8/METRICS.
  • Søfteland, L.; Berntssen, M. H. G.; Kirwan, J. A.; Størseth, T. R.; Viant, M. R.; Torstensen, B. E.; Waagbø, R.; Olsvik, P. A. Omega-3 and Alpha-Tocopherol Provide More Protection against Contaminants in Novel Feeds for Atlantic Salmon (Salmo Salar L.) than Omega-6 and Gamma Tocopherol. Toxicol. Reports. 2016, 3, 211–224. DOI: 10.1016/J.TOXREP.2016.01.008.
  • Shen, Q.; Song, G.; Zhao, Q.; Wang, P.; Yang, H.; Xue, J.; Wang, H.; Cui, Y.; Wang, H. Detection of Lipidomics Characterization of Tuna Meat during Different Wet-Aging Stages Using IKnife Rapid Evaporative Ionization Mass Spectrometry. Food Res. Int. 2022, 156. DOI: 10.1016/j.foodres.2022.111307.
  • Ganesan, P.; Kaewmanee, T.; Benjakul, S.; Baharin, B. S. Comparative Study on the Nutritional Value of Pidan and Salted Duck Egg. Korean J. Food Sci. Anim. Resour. 2014, 34, 1. DOI: 10.5851/KOSFA.2014.34.1.1.
  • Kato, S.; Iseki, T.; Hanzawa, Y.; Otoki, Y.; Ito, J.; Kimura, F.; Miyazawa, T.; Nakagawa, K. Evaluation of the Mechanisms of Mayonnaise Phospholipid Oxidation. J. Oleo Sci. 2017, 66, 369–374. DOI: 10.5650/JOS.ESS16187.
  • Motta-Romero, H.; Zhang, Z.; Tien Nguyen, A.; Schlegel, V.; Zhang, Y. Isolation of Egg Yolk Granules as Low-Cholesterol Emulsifying Agent in Mayonnaise. J. Food Sci. 2017, 82, 1588–1593. DOI: 10.1111/1750-3841.13747.
  • Wang, Q.; Jin, G.; Jin, Y.; Ma, M.; Wang, N.; Liu, C.; He, L. Discriminating Eggs from Different Poultry Species by Fatty Acids and Volatiles Profiling: Comparison of SPME-GC/MS, Electronic Nose, and Principal Component Analysis Method. Eur. J. Lipid Sci. Technol. 2014, 116, 1044–1053. DOI: 10.1002/EJLT.201400016.
  • Luo, W.; Liu, X.; Wang, B.; Wu, D.; Wang, J.; Geng, F. Quantitative Lipidomics Analysis of Changes in Egg Yolk Lipids during Spray-Drying and Subsequent Accelerated Storage. Curr. Res. Food Sci. 2023, 6, 100503. DOI: 10.1016/J.CRFS.2023.100503.
  • Campos, A. M.; Ricardo, F.; Alves, E.; Reis, A.; Couto, D.; Domingues, P.; Domingues, M. R. M. Lipidomic Investigation of Eggs’ Yolk: Changes in Lipid Profile of Eggs from Different Conditions. Food Res. Int. 2016, 89, 177–185. DOI: 10.1016/J.FOODRES.2016.07.006.
  • Górska-Warsewicz, H.; Rejman, K.; Laskowski, W.; Czeczotko, M. Milk and Dairy Products and Their Nutritional Contribution to the Average Polish Diet. Nutr. 2019, 11. DOI: 10.3390/NU11081771.
  • Gumus, C. E.; Gharibzahedi, S. M. T. Yogurts Supplemented with Lipid Emulsions Rich in Omega-3 Fatty Acids: New Insights into the Fortification, Microencapsulation, Quality Properties, and Health-Promoting Effects. Trends Food Sci. Technol. 2021, 110, 267–279. DOI: 10.1016/J.TIFS.2021.02.016.
  • Yu, E.; Hu, F. B. Dairy Products, Dairy Fatty Acids, and the Prevention of Cardiometabolic Disease: A Review of Recent Evidence. Curr. Atheroscler. Rep. 2018, 20, 1–9. DOI: 10.1007/S11883-018-0724-Z/METRICS.
  • Hanus, O.; Samkova, E.; Křížova, L.; Hasoňova, L.; Kala, R. Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability—A Review. Mol. 2018, 23. DOI: 10.3390/MOLECULES23071636.
  • Samková, E.; Špička, J.; Pešek, M.; Pelikánová, T.; Animal Factors, H. O. Affecting Fatty Acid Composition of Cow Milk Fat: A Review. S. Afr. J. Anim. Sci. 2012, 42, 83–100. DOI: 10.4314/sajas.v42i2.1.
  • Clarke, H. J.; O’Sullivan, M. G.; Kerry, J. P.; Kilcawley, K. N. Correlating Volatile Lipid Oxidation Compounds with Consumer Sensory Data in Dairy Based Powders during Storage. Antioxidants. 2020, 9. DOI: 10.3390/ANTIOX9040338.
  • Kim, N. S.; Lee, J. H.; Han, K. M.; Kim, J. W.; Cho, S.; Kim, J. Discrimination of Commercial Cheeses from Fatty Acid Profiles and Phytosterol Contents Obtained by GC and PCA. Food Chem. 2014, 143, 40–47. DOI: 10.1016/J.FOODCHEM.2013.07.083.
  • Anastasiou, R.; Kazou, M.; Georgalaki, M.; Aktypis, A.; Zoumpopoulou, G.; Tsakalidou, E. Omics Approaches to Assess Flavor Development in Cheese. Foods. 2022, 11, 188. DOI: 10.3390/FOODS11020188/S1.
  • Barłowska, J.; Paszczyk, B. Cheese and Butter as a Source of Health-Promoting Fatty Acids in the Human Diet. Anim. 2022, 12. DOI: 10.3390/ANI12233424.
  • Greis, M.; Sainio, T.; Katina, K.; Nolden, A. A.; Kinchla, A. J.; Seppä, L.; Partanen, R. Physicochemical Properties and Mouthfeel in Commercial Plant-Based Yogurts. Foods. 2022. DOI: 10.3390/FOODS11070941.
  • Sfakianakis, P.; Tzia, C. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review. Foods. 2014, 3, 176–193. DOI: 10.3390/FOODS3010176.
  • Arnold, M.; Rajagukguk, Y. V.; Gramza-Michałowska, A.; Kandylis, P.; Solieri, L.; Garde-Cerdan, T.; Bartkiene, E.; Rocculi, P. Characterization of Dadih: Traditional Fermented Buffalo Milk of Minangkabau. Beverages. 2021, 7. DOI: 10.3390/BEVERAGES7030060.
  • Kaur, H.; Kaur, G.; Ali, S. A. Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. Ferment. 2022. DOI: 10.3390/FERMENTATION8090425.
  • Ganatsios, V.; Nigam, P.; Plessas, S.; Terpou, A. Kefir as a Functional Beverage Gaining Momentum Towards Its Health Promoting Attributes. Beverages. 2021, 7. DOI: 10.3390/BEVERAGES7030048.
  • Farag, M. A.; Jomaa, S. A.; El-wahed, A. A.; El-seedi, H. R. The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutr. 2020, 12. DOI: 10.3390/NU12020346.
  • Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant Activity of Milk and Dairy Products. Anim. 2022, 12. DOI: 10.3390/ANI12030245.
  • Rozenberg, S.; Body, J. J.; Bruyère, O.; Bergmann, P.; Brandi, M. L.; Cooper, C.; Devogelaer, J. P.; Gielen, E.; Goemaere, S.; Kaufman, J. M., et al. Effects of Dairy Products Consumption on Health: Benefits and Beliefs—A Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif. Tissue Int. 2015. DOI: 10.1007/S00223-015-0062-X.
  • Jia, W.; Liu, Y.; Integrated Metabolomics, S. L. Lipidomics Profiling Reveals Beneficial Changes in Sensory Quality of Brown Fermented Goat Milk. Food Chem. 2021, 364, 130378. DOI: 10.1016/J.FOODCHEM.2021.130378.
  • Zhang, H.; Xu, Y.; Zhao, C.; Xue, Y.; Tan, D.; Wang, S.; Jia, M.; Wu, H.; Ma, A.; Chen, G. Milk Lipids Characterization in Relation to Different Heat Treatments Using Lipidomics. Food Res. Int. 2022, 157, 111345. DOI: 10.1016/J.FOODRES.2022.111345.
  • Martinello, M.; Mutinelli, F.; Zooprofilattico, I.; Delle Venezie, S. Antioxidant Activity in Bee Products: A Review. Antioxidants. 2021, 10. DOI: 10.3390/ANTIOX10010071.
  • Giampieri, F.; Quiles, J. L.; Cianciosi, D.; Forbes-Hernández, T. Y.; Orantes-Bermejo, F. J.; Alvarez-Suarez, J. M.; Bee Products, B. M. An Emblematic Example of Underutilized Sources of Bioactive Compounds. J. Agric. Food Chem. 2022, 70, 6833–6848. DOI: 10.1021/ACS.JAFC.1C05822/ASSET/IMAGES/LARGE/JF1C05822_0004.JPEG.
  • Yan, S.; Wang, X.; Sun, M.; Wang, W.; Wu, L.; Xue, X. Investigation of the Lipidomic Profile of Royal Jelly from Different Botanical Origins Using UHPLC-IM-Q-TOF-MS and GC-MS. LWT. 2022, 169, 113894. DOI: 10.1016/J.LWT.2022.113894.
  • Samarghandian, S.; Farkhondeh, T.; Honey, S. F. Health: A Review of Recent Clinical Research. Pharmacognosy Res. 2017, 9, 121. DOI: 10.4103/0974-8490.204647.
  • Anjos, O.; Fernandes, R.; Cardoso, S. M.; Delgado, T.; Farinha, N.; Paula, V.; Estevinho, L. M.; Carpes, S. T. Bee Pollen as a Natural Antioxidant Source to Prevent Lipid Oxidation in Black Pudding. LWT. 2019, 111, 869–875. DOI: 10.1016/J.LWT.2019.05.105.
  • Przybyłek, I.; Karpiński, T. M. Antibacterial Properties of Propolis. Mol. 2019, 24. DOI: 10.3390/MOLECULES24112047.
  • Hadi, A.; Rafie, N.; Arab, A. Bee Products Consumption and Cardiovascular Diseases Risk Factors: A Systematic Review of Interventional Studies. 2021.
  • Gomez-Guillen, M. C.; Gimenez, B.; Lopez-Caballero, M. E.; Montero, M. P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocoll. 2011, 25, 1813–1827. DOI: 10.1016/J.FOODHYD.2011.02.007.
  • Alipal, J.; Mohd Pu’ad, N. A. S.; Lee, T. C.; Nayan, N. H. M.; Sahari, N.; Basri, H.; Idris, M. I.; Abdullah, H. Z. A. Review of Gelatin: Properties, Sources, Process, Applications, and Commercialisation. Mater. Today Proc. 2021, 42, 240–250. DOI: 10.1016/J.MATPR.2020.12.922.
  • Rohman, A.; Windarsih, A.; Erwanto, Y.; Zakaria, Z. Review on Analytical Methods for Analysis of Porcine Gelatine in Food and Pharmaceutical Products for Halal Authentication. Trends Food Sci. Technol. 2020, 101, 122–132. DOI: 10.1016/J.TIFS.2020.05.008.
  • Karakus, M. S.; Akgul, F. Y.; Korkmaz, A.; Atasoy, A. F. Evaluation of Fatty Acids, Free Fatty Acids and Textural Properties of Butter and Sadeyag (Anhydrous Butter Fat) Produced from Ovine and Bovine Cream and Yoghurt. Int. Dairy J. 2022, 126, 105229. DOI: 10.1016/J.IDAIRYJ.2021.105229.
  • Forouhi, N. G.; Krauss, R. M.; Taubes, G.; Willett, W., 2018, Dietary Fat and Cardiometabolic Health: Evidence, Controversies, and Consensus for Guidance. BMJ. 361, 10.1136/BMJ.K2139.
  • Oteng, A. B.; Kersten, S. Mechanisms of Action of Trans Fatty Acids. Adv. Nutr. 2020, 11, 697–708. DOI: 10.1093/ADVANCES/NMZ125.
  • Lehnen, T. E.; da Silva, M. R.; Camacho, A.; Marcadenti, A.; Lehnen, A. M. A Review on Effects of Conjugated Linoleic Fatty Acid (CLA) upon Body Composition and Energetic Metabolism. 2022, 1186/S12970–015–0097–4.
  • Basak, S.; Duttaroy, A. K. Conjugated Linoleic Acid and Its Beneficial Effects in Obesity, Cardiovascular Disease, and Cancer. Nutr. 2020, 12. DOI: 10.3390/NU12071913.
  • Brink, L. R.; Herren, A. W.; McMillen, S.; Fraser, K.; Agnew, M.; Roy, N.; Omics Analysis, L. B. Reveals Variations among Commercial Sources of Bovine Milk Fat Globule Membrane. J. Dairy Sci. 2020, 103, 3002–3016. DOI: 10.3168/JDS.2019-17179.
  • Kaur, N.; Chugh, V.; Gupta, A. K. Essential Fatty Acids as Functional Components of Foods- a Review. J. Food Sci. Technol. 2014, 51, 2289–2303. DOI: 10.1007/S13197-012-0677-0/METRICS.
  • Sargent, J.; Bell, G.; McEvoy, L.; Tocher, D.; Estevez, A. Recent Developments in the Essential Fatty Acid Nutrition of Fish. Aquaculture. 1999, 177, 191–199. DOI: 10.1016/S0044-8486(99)00083-6.
  • Tocher, D. R.; Betancor, M. B.; Sprague, M.; Olsen, R. E.; Napier, J. A. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutr. 2019, 11. DOI: 10.3390/NU11010089.
  • Všetičková, L.; Suchý, P.; Straková, E.; Karmaoui, A. Factors Influencing the Lipid Content and Fatty Acids Composition of Freshwater Fish: A Review Invasive Pont-Caspian Gobies in the Czech Republic View Project Project ECIP P505/12/ G112 of the “European Centre of Ichthyoparasitology” View Project Factors Influencing the Lipid Content and Fatty Acids Composition of Freshwater Fish: A Review. Asian J. Fish. Aquat. Res. 2019, 5, 1–10. DOI: 10.9734/AJFAR/2019/v5i430082.
  • Moradi, Y.; Bakar, J.; Motalebi, A. A.; Syed Muhamad, S. H.; Che Man, Y. A. Review on Fish Lipid: Composition and Changes during Cooking Methods. 2011, 20, 379–390. doi:10.1080/10498850.2011.576449
  • Luzia, L. A.; Sampaio, G. R.; Castellucci, C. M. N.; Torres, E. A. F. S. The Influence of Season on the Lipid Profiles of Five Commercially Important Species of Brazilian Fish. Food Chem. 2003, 83, 93–97. DOI: 10.1016/S0308-8146(03)00054-2.
  • Singer, P.; Richter, V.; Singer, K.; Löhlein, I. Analyses and Declarations of Omega-3 Fatty Acids in Canned Seafood May Help to Quantify Their Dietary Intake. Nutr. 2021, 13. DOI: 10.3390/NU13092970.
  • Karaca, A. C.; Capanoglu, E. Canned Fish Products: Current Issues and Future Perspectives. Med. J. Nutr. Metab. 2022, 15, 575–579. DOI: 10.3233/MNM-220082.
  • Prieto Lage, Á.; Napolitano, A.; Aubourg, S. P. Enhancement of Lipid Stability and Acceptability of Canned Seafood by Addition of Natural Antioxidant Compounds to the Packing Medium—A Review. Antioxidants. 2023, 12. DOI: 10.3390/ANTIOX12020245.
  • Bienkiewicz, G.; Tokarczyk, G.; Biernacka, P. Influence of Storage Time and Method of Smoking on the Content of EPA and DHA Acids and Lipid Quality of Atlantic Salmon (Salmo Salar) Meat. Int. J. Food Sci. 2022. DOI: 10.1155/2022/1218347.
  • Tiwo, C. T.; Tchoumbougnang, F.; Nganou, E.; Kumar, P.; Nayak, B. Effect of Different Smoking Processes on the Nutritional and Polycyclic Aromatic Hydrocarbons Composition of Smoked Clarias Gariepinus and Cyprinus Carpio. Food Sci. Nutr. 2019, 7, 2412–2418. DOI: 10.1002/FSN3.1107.
  • Farag, M. A.; Abib, B.; Tawfik, S.; Shafik, N.; Khattab, A. R. Caviar and Fish Roe Substitutes: Current Status of Their Nutritive Value, Bio-Chemical Diversity, Authenticity and Quality Control Methods with Future Perspectives. Trends Food Sci. Technol. 2021, 110, 405–417. DOI: 10.1016/J.TIFS.2021.02.015.
  • Pérez-Mateos, M.; Boyd, L.; Lanier, T. Stability of Omega-3 Fatty Acids in Fortified Surimi Seafoods during Chilled Storage. J. Agric. Food Chem. 2004, 52, 7944–7949. DOI: 10.1021/JF049656S.
  • Arab-Tehrany, E.; Jacquot, M.; Gaiani, C.; Imran, M.; Desobry, S.; Beneficial Effects, L. M. Oxidative Stability of Omega-3 Long-Chain Polyunsaturated Fatty Acids. Trends Food Sci. Technol. 2012, 25, 24–33. DOI: 10.1016/J.TIFS.2011.12.002.
  • Gowda, S. G. S.; Narayan, B.; Gopal, S. Comparative Analysis of Bioactive Components of Enzymatically and Fermentatively Produced Fish Sauce from Sardine. Turkish J. Fish. Aquat. Sci. 2023, 23. DOI: 10.4194/TRJFAS22102.
  • Lopetcharat, K.; Choi, Y. J.; Park, J. W.; Daeschel, M. A. Fish Sauce Products and Manufacturing: A Review. 2007, 17, 65–88.
  • Chan, S. X. Y.; Fitri, N.; Mio Asni, N. S.; Sayuti, N. H.; Azlan, U. K.; Qadi, W. S. M.; Dawoud, E. A. D.; Kamal, N.; Sarian, M. N.; Mohd Lazaldin, M. A., et al. A Comprehensive Review with Future Insights on the Processing and Safety of Fermented Fish and the Associated Changes. Foods. 2023, 12, DOI: 10.3390/FOODS12030558.
  • Rincón-Cervera, M. Á.; González-Barriga, V.; Romero, J.; Rojas, R.; López-Arana, S. Quantification and Distribution of Omega-3 Fatty Acids in South Pacific Fish and Shellfish Species. Foods. 2020, 9. DOI: 10.3390/FOODS9020233.
  • Secci, G.; Parisi, G. From Farm to Fork: Lipid Oxidation in Fish Products. A Review. 2016, 15, 124–136. doi:10.1080/1828051X.2015.1128687.
  • Suh, J. H.; Niu, Y. S.; Hung, W. L.; Ho, C. T.; Wang, Y. Lipidomic Analysis for Carbonyl Species Derived from Fish Oil Using Liquid Chromatography–Tandem Mass Spectrometry. Talanta. 2017, 168, 31–42. DOI: 10.1016/J.TALANTA.2017.03.023.
  • Yu, X.; Li, L.; Xue, J.; Wang, J.; Song, G.; Zhang, Y.; Shen, Q. Effect of Air-Frying Conditions on the Quality Attributes and Lipidomic Characteristics of Surimi during Processing. Innov. Food Sci. Emerg. Technol. 2020, 60, 102305. DOI: 10.1016/J.IFSET.2020.102305.
  • Shi, C.; Guo, H.; Wu, T.; Tao, N.; Wang, X.; Zhong, J. Effect of Three Types of Thermal Processing Methods on the Lipidomics Profile of Tilapia Fillets by UPLC-Q-Extractive Orbitrap Mass Spectrometry. Food Chem. 2019, 298, 125029. DOI: 10.1016/J.FOODCHEM.2019.125029.
  • Zhang, M.; Xie, D.; Wang, D.; Xu, W.; Zhang, C.; Li, P.; Sun, C. Lipidomic Profile Changes of Yellow-Feathered Chicken Meat during Thermal Processing Based on UPLC-ESI-MS Approach. Food Chem. 2023, 399, 133977. DOI: 10.1016/J.FOODCHEM.2022.133977.
  • Chiesa, L. M.; Di Cesare, F.; Mosconi, G.; Pavlovic, R.; Campaniello, M.; Tomaiuolo, M.; Mangiacotti, M.; Chiaravalle, E.; Panseri, S. Lipidomics Profile of Irradiated Ground Meat to Support Food Safety. Food Chem. 2022, 375, 131700. DOI: 10.1016/J.FOODCHEM.2021.131700.
  • Du, M.; Ahn, D. U. Effects of Antioxidants and Packaging on Lipid and Cholesterol Oxidation and Color Changes of Irradiated Egg Yolk Powder. J. Food Sci. 2000, 65, 625–629. DOI: 10.1111/J.1365-2621.2000.TB16062.X.
  • Furse, S.; Torres, A. G.; Koulman, A. Fermentation of Milk into Yoghurt and Cheese Leads to Contrasting Lipid and Glyceride Profiles. Nutrients. 2019, 11, 2178.
  • Martin, N.; Hulbert, A. J.; Brenner, G. C.; Brown, S. H. J.; Mitchell, T. W.; Else, P. L. Honey Bee Caste Lipidomics in Relation to Life-History Stage and the Long Life of the Queen. J. Exp. Biol. 2019, 222. DOI: 10.1242/JEB.207043/267392/AM/HONEYBEE-CASTE-LIPIDOMICS-IN-RELATION-TO-LIFE.
  • Morfin, N.; Fillier, T. A.; Pham, T. H.; Goodwin, P. H.; Thomas, R. H.; First, G.-N. E. Insights into the Honey Bee (Apis Mellifera) Brain Lipidome and Its Neonicotinoid-Induced Alterations Associated with Reduced Self-Grooming Behavior. J. Adv. Res. 2022, 37, 75–89. DOI: 10.1016/J.JARE.2021.08.007.
  • Señoráns, M.; Gallo, V.; Calvo, M. V.; Fontecha, J. Lipidomic and Proteomic Profiling of the Milk Fat Globule Membrane from Different Industrial By-Products of the Butter and Butter Oil Manufacturing Process. Foods. 2023, 12. DOI: 10.3390/FOODS12040750.
  • Castro-Gómez, P.; Montero, O.; Fontecha, J.; Arráez-Román, D.; Verardo, V.; In-Depth Lipidomic, B. M. Analysis of Molecular Species of Triacylglycerides, Diacylglycerides, Glycerophospholipids, and Sphingolipids of Buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QToF-MS. Int. J. Mol. Sci. 2017, 18. DOI: 10.3390/IJMS18030605.
  • Shang, J.; Liu, N.; Cheng, J.; Gao, W.; Sun, X.; Analysis, G. M. Comparison of Lipids in Saanen Goat Milk from Different Geographic Regions in China Based on UHPLC-QTOF-MS Lipidomics. Food Res. Int. 2022, 157, 111441.
  • Gowda, S. G. B.; Minami, Y.; Gowda, D.; Chiba, H.; Hui, S.-P. Detection and Characterization of Lipids in Eleven Species of Fish by Non-Targeted Liquid Chromatography/Mass Spectrometry. Food Chem. 2022, 393, 133402.
  • Meng, Y.; Qiu, N.; Guyonnet, V.; Keast, R.; Zhu, C.; Mine, Y. UHPLC‐Q‐Orbitrap‐based Untargeted Lipidomics Reveals the Variation of Yolk Lipids during Egg Storage. J. Sci. Food Agric. 2022, 102, 5690–5699.
  • Xu, Q. B.; Zhang, Y. D.; Zheng, N.; Wang, Q.; Li, S.; Zhao, S. G.; Wen, F.; Meng, L.; Wang, J. Q. Decrease of Lipid Profiles in Cow Milk by Ultra-High-Temperature Treatment but Not by Pasteurization. J. Dairy Sci. 2020, 103.
  • Chen, J.; Kong, Q.; Sun, Z.; Liu, J. Freshness Analysis Based on Lipidomics for Farmed Atlantic Salmon (Salmo Salar L. Stored at Different Times. Food Chem. 2022, 373, 131564.
  • Daley, C. A.; Abbott, A.; Doyle, P. S.; Nader, G. A.; Larson, S. A. Review of Fatty Acid Profiles and Antioxidant Content in Grass-Fed and Grain-Fed Beef. Nutr. J. 2010, 9, 1–12.