1,002
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Development and characterization of symbiotic microcapsules to enhance the viability of probiotic under stressed conditions

, , , , , , , , , , & show all
Pages 2838-2853 | Received 16 Jun 2023, Accepted 28 Aug 2023, Published online: 28 Sep 2023

References

  • Raddatz, G. C.; Fonseca, V. R.; Cichoski, A. J.; Zepka, L. Q.; Jacob-Lopes, E.; Campagnol, P. C. B.; de Menezes, C. R.; Muller, E. I.; de Moraes Flores, E. M.; de Bona da Silva, C., et al. Viability and Stability Evaluation of Lactobacillus Casei LC03 Co-Encapsulated with Red Onion (Allium Cepa L.) Peel Extract. LWT. 2022, 153, 112434. DOI: 10.1016/j.lwt.2021.112434.
  • Chen, Q.; McGillivray, D.; Wen, J.; Zhong, F.; Quek, S. Y. Co-Encapsulation of Fish Oil with Phytosterol Esters and Limonene by Milk Proteins. J. Food Eng. 2013, 117(4), 505–512. DOI: 10.1016/j.jfoodeng.2013.01.011.
  • Chaikham, P. Stability of Probiotics Encapsulated with Thai Herbal Extracts in Fruit Juices and Yoghurt During Refrigerated Storage. Food. Biosci. 2015, 12, 61–66. DOI: 10.1016/j.fbio.2015.07.006.
  • Colín-Cruz, M. A.; Pimentel-Gonz´ Alez, D. J.; Carrillo-Navas, H.; Alvarez-Ramírez, J.; Guadarrama-Lezama, A. Co-Encapsulation of Bioactive Compounds from Blackberry Juice and Probiotic Bacteria in Biopolymeric Matrices. LWT. 2019, 110, 94–101. DOI: 10.1016/j.lwt.2019.04.064.
  • Zeng, Y.; Li, Y.; Yang, J.; Pu, X.; Du, J.; Yang, X.; Yang, T.; Yang, S. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being. Evid. Based Complement. Altern. Med. 2017, 2017, 1–13. DOI: 10.1155/2017/9402849.
  • Rouis-Soussi, L. S.; El Ayeb-Zakhama, A. E.; Aouni Mahjoub, A.; Guido Flamini, G.; Hichem Ben Jannet, H. B.; Harzallah-Skhiri, F. Chemical Composition and Antibacterial Activity of Essential Oils from the Tunisian Allium Nigrum L. Excli. J. 2014, 13, 526–535.
  • Matsuura, H. Saponins in Garlic as Modifiers of the Risk of Cardiovascular Disease. J. Nutr. 2001, 131(3), 1000S–1005S. DOI: 10.1093/jn/131.3.1000S.
  • Jan, A. T.; Kamli, M. R.; Murtaza, I.; Singh, J. B.; Ali, A.; Haq, Q. M. R. Dietary Flavonoid Quercetin and Associated Health Benefits-An Overview. Food Rev. Int. 2010, 26(3), 302–317. DOI: 10.1080/87559129.2010.484285.
  • Desjardins, Y. Horticultural Science Focus-Onion as a Nutraceutical and Functional Food. Chron. Hortic. 2008, 48, 8.
  • Li, S.; Ma, C.; Gong, G.; Liu, Z.; Chang, C.; Xu, Z. The Impact of Onion Juice on Milk Fermentation by Lactobacillus acidophilus. LWT –Food Sci. Technol. 2016, 65, 543–548. DOI: 10.1016/j.lwt.2015.08.042.
  • Tang, S. M.; Deng, X. T.; Zhou, J.; Li, Q.-P.; Ge, X.-X.; Miao, L. Pharmacological Basis and New Insights of Quercetin Action in Respect to Its Anti-Cancer Effects. BPJ. 2020, 121, 109604. DOI: 10.1016/j.biopha.2019.109604.
  • Dabeek, W. M.; Marra, M. V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients. 2019, 11(10), 2288. DOI: 10.3390/nu11102288.
  • Zhang, Z.; Peng, X.; Zhang, N.; Liu, L.; Wang, Y.; Ou, S. Cytotoxicity Comparison of Quercetin and Its Metabolites from in vitro Fermentation of Several Gut Bacteria. Food. Funct. 2014, 5(9), 2152. DOI: 10.1039/c4fo00418c.
  • Moon, J.; Do, H. J.; Kim, O. Y.; Shin, M. J. Antiobesity Effects of Quercetin-Rich Onion Peel Extract on the Differentiation of 3T3-L1 Preadipocytes and the Adipogenesis in High Fat-Fed Rats. FCT. 2013, 58, 347–354. DOI: 10.1016/j.fct.2013.05.006.
  • Prior, R. L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food. Chem. 2005 May18, 53, 4290–4302. DOI: 10.1021/jf0502698.
  • Moongngarm, A.; Trachoo, N.; Sirigungwan, N. Low Molecular Weight Carbohydrates, Prebiotic Content, and Prebiotic Activity of Selected Food Plants in Thailand. Adv. J. Food. Sci. Technol. 2011, 3(4), 269–274.
  • Scholz-Ahrens, K. E.; Ade, P.; Marten, B.; Weber, P.; Timm, W.; AHil, Y.; Gluer, C. C.; Schrezenmeir, J. Prebiotics, Probiotics, and Synbiotics Affect Mineral Absorption, Bone Mineral Content, and Bone Structure. J. Nutr. 2007, 137(3), 838S–846S. DOI: 10.1093/jn/137.3.838S.
  • Judprasong, K.; Tanjor, S.; Puwastien, P.; Sungpuag, P. Investigation of Thai Plants for Potential Sources of Inulin-Type Fructans. J. Food Comp. Anal. 2011, 24(4–5), 642–649. DOI: 10.1016/j.jfca.2010.12.001.
  • Matsuhiro, B.; Torres, R.; Zuniga, E. A.; Aguirre, M. J.; Mendoza, L. E.; Issaacs, M. Determination of Low Molecular Weight Carbohydrates in Cabernet Sauvignon Red Wines. J. Chil. Chem. Soc. 2009, 54(4), 405–407. DOI: 10.4067/S0717-97072009000400018.
  • Espinosa-Martos, I.; Rico, E.; Ruperez, P. N. Note. Low Molecular Weight Carbohydrates in Foods Usually Consumed in Spain. Food Sci. Technol. Int. 2006, 12(2), 171–175. DOI: 10.1177/1082013206063838.
  • Viera, V. B.; Piovesan, N.; Rodrigues, J. B.; de O Mello, R.; Prestes, R. C.; Dos Santos, R. C.; de A Vaucher, R.; Hautrive, T. P.; Kubota, E. H. Extraction of Phenolic Compounds and Evaluation of the Antioxidant and Antimicrobial Capacity of Red Onion Skin (Allium Cepa L.). Int. Food Res. J. 2017, 24(3), 990–999.
  • Hussein, H.; Awad, S.; EI-Sayed, I.; Ibrahim, A. Impact of Chickpea as Prebiotic, Antioxidant and Thickener Agent of Stirred Bio-Yoghurt. Ann. Agric. Sci. 2020, 65, 49–58. DOI: 10.1016/j.aoas.2020.03.001.
  • Huebner, J.; Wehling, R. L.; Hutkins, R. W. Functional Activity of Commercial Prebiotics. Int. Dairy. J. 2007, 17(7), 770–775. DOI: 10.1016/j.idairyj.2006.10.006.
  • de Araújo Etchepare, M.; Raddatz, G. C.; Cichoski, A. J.; Flores, É. M.; Barin, J. S.; Zepka, L. Q.; Jacob-Lopes, E.; Grosso, C. R.; de Menezes, C. R. Effect of Resistant Starch (Hi-Maize) on the Survival of Lactobacillus acidophilus Microencapsulated with Sodium Alginate. JFF. 2016, 21, 321–329. DOI: 10.1016/j.jff.2015.12.025.
  • Krunić, T. Z.; Obradović, N. S.; Rakin, M. B. Application of Whey Protein and Whey Protein Hydrolysate as Protein Based Carrier for Probiotic Starter Culture. Food. Chem. 2019, 293, 74–82. DOI: 10.1016/j.foodchem.2019.04.062.
  • Ji, Y. R.; Choi, S.; Lee, M. J.; Cho, Y.; Cho, Y. Microencapsulation of Probiotic Lactobacillus acidophilus kbl409 by Extrusion Technology to Enhance Survival Under Simulated Intestinal and Freezedrying Conditions. J. Microbiol and Biotechnol. 2019, 29(5), 721–730. DOI: 10.4014/jmb.1903.03018.
  • Martin, M. J.; Lara-Villoslada, F.; Ruiz, M. A.; Morales, M. E. Effect of Unmodified Starch on Viability of Alginate-Encapsulated Lactobacillus Fermentum CECT5716. LWT- Food Sci. Technol. 2013, 53(2), 480–486. DOI: 10.1016/j.lwt.2013.03.019.
  • Çanga, E. M.; Dudak, F. C. Improved Digestive Stability of Probiotics Encapsulated within Poly (Vinyl Alcohol)/Cellulose Acetate Hybrid Fbers. Carbohydr. Polym. 2021, 264, 117990. DOI: 10.1016/j.carbpol.2021.117990.
  • Ribeiro, E. F.; Borreani, J.; Moraga, G.; Nicoletti, V. R.; Quiles, A.; Hernando, I. Digestibility and Bioaccessibility of Pickering Emulsions of Roasted Coffee Oil Stabilized by Chitosan and Chitosansodium Tripolyphosphate Nanoparticles. Food. Biophys. 2020, 15(2), 196–205. DOI: 10.1007/s11483-019-09614-x.
  • Araújo Etchepare, M.; Nunes, G. L.; Nicoloso, B. R.; Barin, J. S.; Flores, E. M. M.; de Oliveira Mello, R.; de Menezes, C. R. Improvement of the Viability of Encapsulated Probiotics Using Whey Proteins. LWT. 2020, 117, 108601. DOI: 10.1016/j.lwt.2019.108601.
  • Moongngarm, A.; Saetung, N. Comparison of Chemical Compositions and Bioactive Compounds of Germinated Rough Rice and Brown Rice. Food. Chem. 2010, 122(3), 782–788. DOI: 10.1016/j.foodchem.2010.03.053.
  • Portman, D.; Blanchad, C.; Mahajan, P.; Naiker, M.; Panozzo, J. F. Water-Soluble Carbohydrates During Fermentation and Baking of Composite Wheat and Lentil Flour—Implications for Enhanced Functionality. Cereal. Chem. 2019, 96, 447–455. DOI: 10.1002/cche.10144.
  • Chen, K. N.; Chen, M. J.; Liu, J. R.; Lin, C. W.; Chiu, H. Y. Optimization of Incorporated Prebiotics as Coating Materials for Probiotic Microencapsulation. J. Food Sci. 2005, 70(5), M260–M266. DOI: 10.1111/j.1365-2621.2005.tb09981.x.
  • Sultana, K.; Godward, G.; Reynolds, N.; Arumugaswamy, R.; Peiris, P.; Kailasapathy, K. Encapsulation of Probiotic Bacteria with Alginate-Starch and Evaluation of Survival in Simulated Gastro-Intestinal Conditions and in Yoghurt. Int. J. Food Microbiol. 2000, 62, 47–55. DOI: 10.1016/S0168-1605(00)00380-9.
  • Pandey, P.; Mishra, H. N. Co-Microencapsulation of γ-Aminobutyric Acid (GABA) and Probiotic Bacteria in Thermostable and Biocompatible Exopolysaccharides Matrix. LWT–Food Sci. Technol. 2021, 136, 110293. Article DOI: 10.1016/J.LWT.2020.110293.
  • Fávaro-Trindade, C. S.; Pinho, S. C. D.; Rocha, G. A. Revisão: Microencapsulação de ingredientes alimentícios. Braz. J. Food Technol. 2008, 11(2), 103–112.
  • Anal, A. K.; Bhopatkar, D.; Tokura, S.; Tamura, H.; Stevens, W. F. Chitosanalginate Multilayer Beads for Gastric Passage and Controlled Intestinal Release of Protein. Drug. Dev. Ind. Pharm. 2003, 29(6), 713–724. DOI: 10.1081/DDC-120021320.
  • Shaharuddin, S.; Muhamad, I. I. Microencapsulation of Alginate-Immobilized Bagasse with Lactobacillus Rhamnosus NRRL 442: Enhancement of Survivability and Themotolerance. Carbohydr. Polym. 2015, 119, 173–181. DOI: 10.1016/j.carbpol.2014.11.045.
  • Sandoval-Castilla, O.; Lobato-Calleros, C.; García-Galindo, H. S.; Alvarez-Ramírez, J.; Vernon-Carter, E. J. Textural Properties of Alginate–Pectin Beads and Survivability of Entrapped Lb. Casei in Simulated Gastrointestinal Conditions and in Yoghurt. Food Res. Inter. 2010, 43, 111–117. DOI: 10.1016/j.foodres.2009.09.010.
  • Vodnar, D. C.; Socaciu, C. Green Tea Increases the Survival Yield of Bifidobacteria in Simulated Gastrointestinal Environment and During Refrigerated Conditions. Chem. Cent. J. 2012, 6(1). DOI: 10.1186/1752-153X-6-61.
  • Poletto, G.; Fonseca, B. D.; Raddatz, G. C.; Wagner, R.; Lopes, E. J.; Barin, J. S.; Flores, E. M. D. M.; Menezes, C. R. D. Encapsulation of Lactobacillus acidophilus and Different Prebiotic Agents by External Ionic Gelation Followed by Freeze-Drying. Cienc. Rural. 2019a, 49(2). DOI: 10.1590/0103-8478cr20180729.
  • Mitrea, E.; Ott, C.; Meghea, A. New Approaches on the Synthesis of Effective Nanostructured Lipid Carriers. Rev. Chim. 2014, 65(1), 50–55.
  • Capela, P.; Hay, T. K. C.; Shah, N. P. Effect of Homogenization on Bead Size and Survival of Encapsulated Probiotic Bacteria. Food Res. Inter. 2007, 40, 1261–1269. DOI: 10.1016/j.foodres.2007.08.006.
  • Kim, E. S.; Lee, J. S.; Lee, H. G. Calcium-Alginate Microparticles for Sustained Release of Catechin Prepared via an Emulsion Gelation Technique. Food Sci. Biotechnol. 2016, 25(5), 1337–1343. DOI: 10.1007/s10068-016-0210-8.
  • Poletto, G.; Raddatz, G. C.; Cichoski, A. J.; Zepka, L. Q.; Lopes, E. J.; Barin, J. S.; Wagner, R.; de Menezes, C. R. Study of Viability and Storage Stability of Lactobacillus Acidophillus When Encapsulated with the Prebiotics Rice Bran, Inulin and Hi-Maize. Food. Hydrocoll. 2019b, 95(95), 238–244. DOI: 10.1016/j.foodhyd.2019.04.049.
  • Vaziri, A. S.; Alemzadeh, I.; Vossoughi, M.; Khorasani, A. C. Comicroencapsulation of Lactobacillus Plantarum and DHA Fatty Acid in Alginate-Pectingelatin Biocomposites. Carbohydr. Polym. 2018, 199, 266–275. DOI: 10.1016/j.carbpol.2018.07.002.
  • Vodnar, D. C.; Socaciu, C. Selenium Enriched Green Tea Increase Stability of Lactobacillus Casei and Lactobacillus Plantarum in Chitosan Coated Alginate Microcapsules During Exposure to Simulated Gastrointestinal and Refrigerated Conditions. LWT- Food Sci. Technol. 2014, 57(1), 406–411. DOI: 10.1016/j.lwt.2013.12.043.
  • Chavarri´, M.; Maran˜on ´, I.; Ares, R.; Ib´ Anez ˜, F. C.; Marzo, F.; Villaran ´, M. Microencapsulation of a Probiotic and Prebiotic in Alginate-Chitosan Capsules Improves Survival in Simulated Gastro-Intestinal Conditions. Int. J. Food Microbiol. 2010, 142(1–2), 185–189. DOI: 10.1016/j.ijfoodmicro.2010.06.022.
  • González-Ferrero, C.; Irache, J. M.; González-Navarro, C. J. Soybean Protein-Based Microparticles for Oral Delivery of Probiotics with Improved Stability During Storage and Gut Resistance. Food. Chem. 2018, 239, 879–888. DOI: 10.1016/j.foodchem.2017.07.022.
  • Isa, T.; Zakaria, Z. A. B.; Rukayadi, Y.; Mohd Hezmee, M. N.; Jaji, A. Z.; Imam, M. U.; Hammadi, N. I.; Mahmood, S. K. Antibacterial Activity of Ciprofloxacin-Encapsulated Cockle Shells Calcium Carbonate (Aragonite) Nanoparticles and Its Biocompatability in Macrophage J774A.1. Int. J. Mol. Sci. 2016, 17(5), 713. DOI: 10.3390/ijms17050713.
  • Borumand, M. R. Preparation and Characterization of Sodium Alginate Nanoparticles Containing ICD-85 (Venom Derived Peptides). IJIAS. 2013, 4(3), 534–542.
  • Homayoonfal, M.; Mousavi, S. M.; Kiani, H.; Askari, G.; Desobry, S.; Arab-Tehrany, E. Encapsulation of Berberis Vulgaris Anthocyanins into Nanoliposome Composed of Rapeseed Lecithin. A Comprehensive Study on Physicochemical Characteristics and Biocompatibility. Foods. 2021, 10(3), 492. DOI: 10.3390/foods10030492.
  • Tian, Y.; Liu, Y.; Zhang, L.; Hua, Q.; Liu, L.; Wang, B.; Tang, J. Preparation and Characterization of Gelatin-Sodium Alginate/Paraffin Phase Change Microcapsules. Colloids Surf. A Physicochem. Eng. Aspects. 2020, 586, 124216. DOI: 10.1016/j.colsurfa.2019.124216.
  • Keskin, M.; Keskin, Ş.; Kolayli, S. Preparation of Alcohol Free Propolis-Alginate Microcapsules, Characterization and Release Property. LWT. 2019, 108, 89–96. DOI: 10.1016/j.lwt.2019.03.036.
  • Hui, P. C. L.; Wang, W. Y.; Kan, C. W.; Ng, F. S. F.; Zhou, C. E.; Wat, E.; Leung, P. C.; Chan, C.-L.; Lau, C. B.-S.; Leung, P.-C. Preparation and Characterization of Chitosan/Sodium Alginate (CSA) Microcapsule Containing Cortex Moutan. Colloids And Surfaces A: Physicochem And Engine. Aspects. 2013, 434, 95–101. DOI: 10.1016/j.colsurfa.2013.05.043.
  • Chadorshabi, S.; Hallaj-Nezhadi, S.; Ghasempour, Z. Liposomal System Based on Lyophilization of a Monophase Solution for Stabilization of Bioactives from Red Onion Skin. LWT. 2022, 172, 114174. DOI: 10.1016/j.lwt.2022.114174.
  • Kanatt, S. R.; Tari, S.; Chawla, S. P. Encapsulation of Extract Prepared from Irradiated Onion Scales in Alginate Beads: A Potential Functional Food Ingredient. J. Food Meas. Charact. 2018, 12(2), 848–858. DOI: 10.1007/s11694-017-9699-7.
  • Sathyabama, S.; Ranjith Kumar, M.; Bruntha Devi, P.; Vijayabharathi, R.; Brindha Priyadharisini, V. Co-Encapsulation of Probiotics with Prebiotics on Alginate Matrix and Its Effect on Viability in Simulated Gastric Environment. LWT- Food Sci. Technol. 2014, 57(1), 419–425. DOI: 10.1016/j.lwt.2013.12.024.
  • Reale, A.; Di Renzo, T.; Rossi, F.; Zotta, T.; Iacumin, L.; Preziuso, M.; Parente, E.; Sorrentino, E.; Coppola, R. Tolerance of Lactobacillus Casei, Lactobacillus Paracasei and Lactobacillus Rhamnosus Strains to Stress Factors Encountered in Food Processing and in the Gastro-Intestinal Tract. LWT- Food Sci. Technol. 2015, 60(2), 721–728. DOI: 10.1016/j.lwt.2014.10.022.
  • Bron, P. A.; Marco, M.; Hoffer, S. M.; Van Mullekom, E.; De Vos, W. M.; Kleerebezem, M. Genetic Characterization of the Bile Salt Response in Lactobacillus Plantarum and Analysis of Responsive Promoters in vitro and in situ in the Gastrointestinal Tract. J. Bacteriol. Res. 2004, 186(23), 7829–7835. DOI: 10.1128/JB.186.23.7829-7835.2004.
  • Ballan, R.; Battistini, C.; Xavier-Santos, D.; Saad, S. M. I. Interactions of Probiotics and Prebiotics with the Gut Microbiota. Prog. mol. biol. transl. sci. 2020. DOI: 10.1016/bs.pmbts.2020.03.008.
  • Dimitrellou, D.; Kandylis, P.; Petrovi´c, T.; Dimitrijevi´c-Brankovi´c, S.; Levi´c, S.; Nedovi´c, V.; Kourkoutas, Y. Survival of Spray Dried Microencapsulated Lactobacillus Casei ATCC 393 in Simulated Gastrointestinal Conditions and Fermented Milk. LWT - Food .Sci And Technol. 2016, 71, 169–174. DOI: 10.1016/j.lwt.2016.03.007.
  • Mandal, S.; Puniya, A. K.; Singh, K. Effect of Alginate Concentrations on Survival of Microencapsulated Lactobacillus Casei NCDC-298. Int. Dairy. J. 2006, 16(10), 1190–1195. DOI: 10.1016/j.idairyj.2005.10.005.
  • Li, K.; Wang, B.; Wang, W.; Liu, G.; Ge, W.; Zhang, M.; Yue, B.; Kong, M. Microencapsulation of Lactobacillus Casei BNCC 134415 Under Lyophilization Enhances Cell Viability During Cold Storage and Pasteurization, and in Simulated Gastrointestinal Fluids. LWT. 2019, 116, 116. DOI: 10.1016/j.lwt.2019.108521.
  • Farias, T. G. S.; de Ladislau, H. F. L.; Stamford, T. C. M.; Medeiros, J. A. C.; Soares, B. L. M.; Stamford Arnaud, T. M.; Stamford, T. L. M. Viabilities of Lactobacillus Rhamnosus ASCC 290 and Lactobacillus Casei ATCC 334 (In Free Form or Encapsulated with Calcium Alginate-Chitosan) in Yellow Mombin Ice Cream. LWT. 2019, 100, 391–396. DOI: 10.1016/j.lwt.2018.10.084.
  • Raddatz, G. C.; de Souza da Fonseca, B.; Poletto, G.; Jacob-Lopes, E.; Cichoski, A. J.; Muller, E. I.; Flores, E. M. M.; de Bona da Silva, C.; Ragagnin de Menezes, C. Influence of the Prebiotics Hi-Maize, Inulin and Rice Bran on the Viability of Pectin Microparticles Containing Lactobacillus acidophilus LA-5 Obtained by Internal Gelation/Emulsification. Powder. Technol. 2020, 362, 409–415. DOI: 10.1016/j.powtec.2019.11.114.
  • da Silva, T. M.; de Deus, C.; de Souza Fonseca, B.; Lopes, E. J.; Cichoski, A. J.; Esmerino, E. A.; de Bona da Silva, C.; Muller, E. I.; Moraes Flores, E. M.; de Menezes, C. R. The Effect of Enzymatic Crosslinking on the Viability of Probiotic Bacteria (Lactobacillus acidophilus) Encapsulated by Complex Coacervation. Int. Food Res. J. 2019, 125, 125. DOI: 10.1016/j.foodres.2019.108577.
  • Lee, H. C.; Jenner, A. M.; Low, C. S.; Lee, Y. K. Effect of Tea Phenolics and Their Aromatic Fecal Bacterial Metabolites on Intestinal Microbiota. Res. Microbiol. 2006, 157(9), 876–884. DOI: 10.1016/j.resmic.2006.07.004.