1,537
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in protein-based nanoparticles and their applications in the delivery of bioactive compounds

, , , , , , , & show all
Pages 2866-2880 | Received 28 Nov 2022, Accepted 17 Sep 2023, Published online: 28 Sep 2023

References

  • Vithani, K.; Goyanes, A.; Jannin, V.; Basit, A. W.; Gaisford, S.; Boyd, B. J. J. P. R. An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-Based Drug Delivery Systems. Pharm. Res. 2019, 36(1), 1–20. DOI: 10.1007/s11095-018-2531-1.
  • Yun, Y. H.; Lee, B. K.; Park, K. J. J. O. C. R. Controlled Drug Delivery: Historical Perspective for the Next Generation. J. Controlled Release. 2015, 219, 2–7. DOI: 10.1016/j.jconrel.2015.10.005.
  • Boyd, B. J.; Bergström, C. A.; Vinarov, Z.; Kuentz, M.; Brouwers, J.; Augustijns, P.; Brandl, M.; Bernkop-Schnürch, A.; Shrestha, N.; Préat, V. J. E. J. O. P. S., et al. Successful Oral Delivery of Poorly Water-Soluble Drugs Both Depends on the Intraluminal Behavior of Drugs and of Appropriate Advanced Drug Delivery Systems. Eur. J. Pharm. Sci. 2019, 137, 104967. DOI: 10.1016/j.ejps.2019.104967.
  • Tiwari, G.; Tiwari, R.; Bannerjee, B.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, S. K. I. Drug Delivery Systems: An Updated Review. Int. J. Pharmaceutical Investigation. 2012, 2(1), 2. DOI: 10.4103/2230-973X.96920.
  • Calixto, G. M. F.; de Annunzio, S. R.; Victorelli, F. D.; Frade, M. L.; Ferreira, P. S.; Chorilli, M.; Fontana, C. R. J. A. P. Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: A Review. AAPS Pharm. Scitech. 2019, 20(7), 1–17. DOI: 10.1208/s12249-019-1407-y.
  • Castro, E.; Kumar, A. J. N. I. D. D. Nanoparticles in Drug Delivery Systems. Nanomedicine in drug delivery. 2013, 1, 1–22.
  • Ding, S.; Zhang, N.; Lyu, Z.; Zhu, W.; Chang, Y.-C.; Hu, X.; Du, D.; Lin, Y. J. M. T. Protein-Based Nanomaterials and Nanosystems for Biomedical Applications: A Review. Mater. Today. 2020, 43, 166–184. DOI: 10.1016/j.mattod.2020.11.015.
  • Lohcharoenkal, W.; Wang, L.; Chen, Y. C.; Rojanasakul, Y. J. B. R. I. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy. BioMed Research International. 2014, 2014, 1–12. DOI: 10.1155/2014/180549.
  • Bhakta, S. A.; Evans, E.; Benavidez, T. E.; Garcia, C. D. J. A. C. A. Protein Adsorption Onto Nanomaterials for the Development of Biosensors and Analytical Devices: A Review. Analytica Chimica Acta. 2015, 872, 7–25. DOI: 10.1016/j.aca.2014.10.031.
  • Zhang, Y.; Chan, H. F.; Leong, K. W. J. A. D. D. R. Advanced Materials and Processing for Drug Delivery: The Past and the Future. Adv. Drug Delivery Rev. 2013, 65(1), 104–120. DOI: 10.1016/j.addr.2012.10.003.
  • Yang, X.; Yang, S.; Chai, H.; Yang, Z.; Lee, R. J.; Liao, W.; Teng, L. J. P. O.; Seno, M. A Novel Isoquinoline Derivative Anticancer Agent and Its Targeted Delivery to Tumor Cells Using Transferrin-Conjugated Liposomes. PLoS One. 2015, 10(8), e0136649. DOI: 10.1371/journal.pone.0136649.
  • Liu, R.; Zhu, G. J.; Qing, P. In Study on the Treatment of Ischemic Stroke Based on Poly (Lactic-Co-Glycolic Acid)(plga) Nanotechnology. Materials Science Forum, Trans Tech Publ. 2021, 1027, 58–63. DOI: 10.4028/www.scientific.net/MSF.1027.58.
  • Chang, Y.-C.; Ge, X.; Wang, L.-J.; Lee, S. S.; Paulsen, M. H.; Khan, Q. M.; Khalid, Z. M.; Bhalli, J. A.; Waheed, U.; Simpson, C. D. J. S., et al. An Ultra Low-Cost Smartphone Device for in-Situ Monitoring of Acute Organophosphorus Poisoning for Agricultural Workers. Sens. Actuators, B. 2018, 275, 300–305. DOI: 10.1016/j.snb.2018.08.009.
  • Liang, P.; Kang, C.; Yang, E.; Ge, X.; Du, D.; Lin, Y. J. A. A Sensitive Magnetic Nanoparticle-Based Immunoassay of Phosphorylated Acetylcholinesterase Using Protein Cage Templated Lead Phosphate for Signal Amplification with Graphite Furnace Atomic Absorption Spectrometry Detection. Analyst. 2016, 141(7), 2278–2283. DOI: 10.1039/C5AN02656C.
  • Zhang, N.; Mei, K.; Guan, P.; Hu, X.; Zhao, Y. J. S. Protein‐Based Artificial Nanosystems in Cancer Therapy. Small. 2020, 16(23), 1907256. DOI: 10.1002/smll.201907256.
  • Wan, Z.-L.; Guo, J.; Yang, X.-Q. J. F. Plant Protein-Based Delivery Systems for Bioactive Ingredients in Foods. Food & Function journal. 2015, 6(9), 2876–2889. DOI: 10.1039/C5FO00050E.
  • Salatin, S.; Jelvehgari, M.; Maleki-Dizaj, S.; Adibkia, K. J. T. D. A Sight on Protein-Based Nanoparticles as Drug/Gene Delivery Systems. Therapeutic Delivery. 2015, 6(8), 1017–1029. DOI: 10.4155/tde.15.28.
  • Kreuter, J.; Hekmatara, T.; Dreis, S.; Vogel, T.; Gelperina, S.; Langer, K. J. J. O. C. R. Covalent Attachment of Apolipoprotein AI and Apolipoprotein B-100 to Albumin Nanoparticles Enables Drug Transport into the Brain. J. Controlled Rel. 2007, 118(1), 54–58. DOI: 10.1016/j.jconrel.2006.12.012.
  • Yoo, J.-W.; Irvine, D. J.; Discher, D. E.; Mitragotri, S. J. N. R. D. D. Bio-Inspired, Bioengineered and Biomimetic Drug Delivery Carriers. Nature Reviews Drug Discovery. 2011, 10(7), 521–535. DOI: 10.1038/nrd3499.
  • Zhang, Y.; Sun, T.; Jiang, C. J. A. P. S. B. Biomacromolecules as Carriers in Drug Delivery and Tissue Engineering. Acta. Pharmaceutica Sinica B. 2018, 8(1), 34–50. DOI: 10.1016/j.apsb.2017.11.005.
  • Spicer, C. D.; Jumeaux, C.; Gupta, B.; Stevens, M. M. J. C. S. R. Peptide and Protein Nanoparticle Conjugates: Versatile Platforms for Biomedical Applications. Chem. Society Reviews J. 2018, 47(10), 3574–3620. DOI: 10.1039/C7CS00877E.
  • Zhang, Y. S.; Khademhosseini, A. Advances in Engineering Hydrogels. Science. 2017, 356(6337), eaaf3627. DOI: 10.1126/science.aaf3627.
  • Zhao, S.; Malfait, W. J.; Guerrero‐Alburquerque, N.; Koebel, M. M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie International Edition. 2018, 57(26), 7580–7608. DOI: 10.1002/anie.201709014.
  • Cao, Y.; Mezzenga, R. Design Principles of Food Gels. Nature Food. 2020, 1(2), 106–118. DOI: 10.1038/s43016-019-0009-x.
  • Saha, P.; Ganguly, R.; Li, X.; Das, R.; Singha, N. K.; Pich, A. J. M. R. C. Zwitterionic Nanogels and Microgels: An Overview on Their Synthesis and Applications. Macromolecular Rapid Communications. 2021, 42(13), 2100112. DOI: 10.1002/marc.202100112.
  • Yao, S.; Li, L.; Su, X.-T.; Wang, K.; Lu, Z.-J.; Yuan, C.-Z.; Feng, J.-B.; Yan, S.; Kong, B.-H.; Song, K. J. J. O. E., et al. Development and Evaluation of Novel Tumor-Targeting Paclitaxel-Loaded Nano-Carriers for Ovarian Cancer Treatment: In vitro and in vivo. J. Exp. Clin. Cancer Res. 2018, 37(1), 1–13. DOI: 10.1186/s13046-018-0700-z.
  • Lynch, I.; Dawson, K. A. Protein–Nanoparticle Interactions. Nano-Enabled Medical Applications. 2020, 231–250.
  • Jacob, J.; Haponiuk, J. T.; Thomas, S.; Gopi, S. Biopolymer Based Nanomaterials in Drug Delivery Systems: A Review. Mat. Today Chem. 2018, 9, 43–55. DOI: 10.1016/j.mtchem.2018.05.002.
  • Hong, S.; Choi, D. W.; Kim, H. N.; Park, C. G.; Lee, W.; Park, H. H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics. 2020, 12(7), 604. DOI: 10.3390/pharmaceutics12070604.
  • Davidov-Pardo, G.; Joye, I. J.; McClements, D. J. Food-Grade Protein-Based Nanoparticles and Microparticles for Bioactive Delivery: Fabrication, Characterization, and Utilization. Advances In Protein Chemistry And Structural Biology. 2015, 98, 293–325.
  • Sau, S.; Alsaab, H. O.; Bhise, K.; Alzhrani, R.; Nabil, G.; Iyer, A. K. J. J. O. C. R. Multifunctional Nanoparticles for Cancer Immunotherapy: A Groundbreaking Approach for Reprogramming Malfunctioned Tumor Environment. J. Controlled Release. 2018, 274, 24–34. DOI: 10.1016/j.jconrel.2018.01.028.
  • Irvine, D. J.; Hanson, M. C.; Rakhra, K.; Tokatlian, T. J. C. R. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem. Reviews. 2015, 115(19), 11109–11146. DOI: 10.1021/acs.chemrev.5b00109.
  • Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.; Piñeros, M.; Znaor, A.; Bray, F. J. I. J. O. C. Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. Int. J. Cancer. 2019, 144(8), 1941–1953. DOI: 10.1002/ijc.31937.
  • Singh, M. S.; Bhaskar, S. J. I. Nanocarrier-Based Immunotherapy in Cancer Management and Research. ImmunoTargets And Therapy. 2014, 3, 121. DOI: 10.2147/ITT.S62471.
  • Lin, H.; Chen, Y.; Shi, J. J. C. S. R. Nanoparticle-Triggered in situ Catalytic Chemical Reactions for Tumour-Specific Therapy. Chemical Society Reviews journal. 2018, 47(6), 1938–1958. DOI: 10.1039/C7CS00471K.
  • Kerkar, S. P.; Restifo, N. P. J. C. R. Cellular Constituents of Immune Escape within the Tumor Microenvironment. Cancer Research. 2012, 72(13), 3125–3130. DOI: 10.1158/0008-5472.CAN-11-4094.
  • Mikelez-Alonso, I.; Aires, A.; Cortajarena, A. L. J. Cancer Nano-Immunotherapy from the Injection to the Target: The Role of Protein Corona. International Journal of Molecular Sciences. 2020, 21(2), 519. DOI: 10.3390/ijms21020519.
  • Qian, H.; Liu, B.; Jiang, X. J. M. T. C. Application of Nanomaterials in Cancer Immunotherapy. Materials Today Chemistry. 2018, 7, 53–64. DOI: 10.1016/j.mtchem.2018.01.001.
  • Raza, F.; Zafar, H.; You, X.; Khan, A.; Wu, J.; Ge, L. Cancer Nanomedicine: Focus on Recent Developments and Self-Assembled Peptide Nanocarriers. J. Mater. Chem. B. 2019, 7(48), 7639–7655. DOI: 10.1039/C9TB01842E.
  • Wan, W.-J.; Qu, C.-X.; Zhou, Y.-J.; Zhang, L.; Chen, M.-T.; Liu, Y.; You, B.-G.; Li, F.; Wang, D.-D.; Zhang, X.-N. Doxorubicin and SiRNA-PD-L1 Co-Delivery with T7 Modified ROS-Sensitive Nanoparticles for Tumor Chemoimmunotherapy. Int. J. Pharmaceutics. 2019, 566, 731–744. DOI: 10.1016/j.ijpharm.2019.06.030.
  • Yang, S.; Ren, Z.; Chen, M.; Wang, Y.; You, B.; Chen, W.; Qu, C.; Liu, Y.; Zhang, X. J. M. P. Nucleolin-Targeting AS1411-Aptamer-Modified Graft Polymeric Micelle with Dual pH/Redox Sensitivity Designed to Enhance Tumor Therapy Through the Codelivery of Doxorubicin/TLR4 siRna and Suppression of Invasion. Mol. Pharmaceutics. 2018, 15(1), 314–325. DOI: 10.1021/acs.molpharmaceut.7b01093.
  • Yuan, Z.-Q.; Chen, W.-L.; You, B.-G.; Liu, Y.; Li, J.-Z.; Zhu, W.-J.; Zhou, X.-F.; Liu, C.; Zhang, X.-N. J. J. O. C. R. Multifunctional Nanoparticles Co-Delivering EZH2 siRna and Etoposide for Synergistic Therapy of Orthotopic Non-Small-Cell Lung Tumor. J. Controlled Release. 2017, 268, 198–211. DOI: 10.1016/j.jconrel.2017.10.025.
  • Chen, W.; Zhong, P.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. J. J. O. C. R. Redox and pH-Responsive Degradable Micelles for Dually Activated Intracellular Anticancer Drug Release. Journal Of Controlled Release. 2013, 169(3), 171–179. DOI: 10.1016/j.jconrel.2013.01.001.
  • Jain, A.; Singh, S. K.; Arya, S. K.; Kundu, S. C.; Kapoor, S. J. A. B. S. Engineering, Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomaterials Science & Engineering. 2018, 4(12), 3939–3961. DOI: 10.1021/acsbiomaterials.8b01098.
  • Yewale, C.; Baradia, D.; Vhora, I.; Misra, A. J. E. O. O. D. D., Proteins: Emerging Carrier for Delivery of Cancer Therapeutics. Expert Opinion on Drug Delivery. 2013, 10(10), 1429–1448. DOI: 10.1517/17425247.2013.805200.
  • Verma, M. L.; Dhanya, B. S.; Rani, V.; Thakur, M.; Jeslin, J.; Kushwaha, R. J. I. J. O. B. M. Carbohydrate and Protein Based Biopolymeric Nanoparticles. Current Status And Biotechnological Applications. 2020, 154, 390–412. DOI: 10.1016/j.ijbiomac.2020.03.105.
  • Wang, Z.; Zhi, K.; Ding, Z.; Sun, Y.; Li, S.; Li, M.; Pu, K.; Zou, J. Emergence in Protein Derived Nanomedicine as Anticancer Therapeutics: More Than a Tour de Force. Seminars in Cancer Biology, Elsevier. 2021, Vol. 69, pp. 77–90. DOI: 10.1016/j.semcancer.2019.11.012.
  • Kariduraganavar, M. Y.; Heggannavar, G. B.; Amado, S.; Mitchell, G. R. Protein Nanocarriers for Targeted Drug Delivery for Cancer Therapy. In Nanocarriers for Drug Delivery. 2019,Elsevier. pp. 173–204. DOI: 10.1016/B978-0-12-814033-8.00006-0.
  • Kudarha, R. R.; Sawant, K. K. J. D. D.; Research, T. Chondroitin Sulfate Conjugation Facilitates Tumor Cell Internalization of Albumin Nanoparticles for Brain-Targeted Delivery of Temozolomide via CD44 Receptor-Mediated Targeting. Drug Delivery And Translational Research. 2021, 11(5), 1994–2008. DOI: 10.1007/s13346-020-00861-x.
  • Shi, Y. J. A. T. Clinical Translation of Nanomedicine and Biomaterials for Cancer Immunotherapy: Progress and Perspectives. Adv. Ther. 2020, 3(9), 1900215. DOI: 10.1002/adtp.201900215.
  • Ghosh, S.; Javia, A.; Shetty, S.; Bardoliwala, D.; Maiti, K.; Banerjee, S.; Khopade, A.; Misra, A.; Sawant, K.; Bhowmick, S. J. J. O. C. R. Triple Negative Breast Cancer and Non-Small Cell Lung Cancer: Clinical Challenges and Nano-Formulation Approaches. J. Controlled Release. 2021, 337, 27–58. DOI: 10.1016/j.jconrel.2021.07.014.
  • Grabowski, N.; Hillaireau, H.; Vergnaud, J.; Tsapis, N.; Pallardy, M.; Kerdine-Römer, S.; Fattal, E. J. I. J. O. P. Surface Coating Mediates the Toxicity of Polymeric Nanoparticles Towards Human-Like Macrophages. Int. J. Pharmaceutics. 2015, 482(1–2), 75–83. DOI: 10.1016/j.ijpharm.2014.11.042.
  • Corbo, C.; Molinaro, R.; Parodi, A.; Toledano Furman, N. E.; Salvatore, F.; Tasciotti, E. J. N. The Impact of Nanoparticle Protein Corona on Cytotoxicity, Immunotoxicity and Target Drug Delivery. Nanomed. 2016, 11(1), 81–100. DOI: 10.2217/nnm.15.188.
  • Fang, R. H.; Kroll, A. V.; Gao, W.; Zhang, L. J. A. M. Cell Membrane Coating Nanotechnology. Adv. Mate. 2018, 30(23), 1706759. DOI: 10.1002/adma.201706759.
  • Mahmoudi, M.; Wang, C.; Moreno, S.; Burlison, S. R.; Alatalo, D.; Hassanipour, F.; Smith, S. E.; Naraghi, M.; Minary-Jolandan, M. J. A. A. M. Three-Dimensional Printing of Ceramics Through “Carving” a Gel and “Filling in” the Precursor Polymer. ACS Applied Materials & Interfaces. 2020, 12(28), 31984–31991. DOI: 10.1021/acsami.0c08260.
  • Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E. J.; Zhong, Z. J. B. Click Hydrogels, Microgels and Nanogels: Emerging Platforms for Drug Delivery and Tissue Engineering. Biomaterials. 2014, 35(18), 4969–4985. DOI: 10.1016/j.biomaterials.2014.03.001.
  • Jia, F.; Song, J.; Kubiak, J. M.; Onoda, M.; Santos, P. J.; Sano, K.; Holten-Andersen, N.; Zhang, K.; Macfarlane, R. J. J. C. O. M. Brush Polymers as Nanoscale Building Blocks for Hydrogel Synthesis. Chemistry of Materials. 2021, 33(14), 5748–5756. DOI: 10.1021/acs.chemmater.1c01585.
  • Deng, Y.; Xi, J.; Meng, L.; Lou, Y.; Seidi, F.; Wu, W.; Xiao, H. J. E. P. J. Stimuli-Responsive Nanocellulose Hydrogels: An Overview. European Polymer J. 2022, 180, 111591. DOI: 10.1016/j.eurpolymj.2022.111591.
  • Balan, K. E.; Boztepe, C.; Künkül, A. J. J. O. D. D. S. Technology, Modeling the Effect of Physical Crosslinking Degree of pH and Temperature Responsive Poly (NIPAAm-Co-Vsa)/alginate IPN Hydrogels on Drug Release Behavior. J. Drug Delivery Sci. Technol. 2022, 75, 103671. DOI: 10.1016/j.jddst.2022.103671.
  • Dickinson, E. J. T. I. F. S. Microgels — an Alternative Colloidal Ingredient for Stabilization of Food Emulsions. Trends in Food Science and Technology. 2015, 43(2), 178–188. DOI: 10.1016/j.tifs.2015.02.006.
  • Farjami, T.; Madadlou, A. J. F. H. Fabrication Methods of Biopolymeric Microgels and Microgel-Based Hydrogels. Food Hydrocolloids. 2017, 62, 262–272. DOI: 10.1016/j.foodhyd.2016.08.017.
  • Jiang, L.; Zhang, C.; Wang, R.; Hu, L. J. S. S. R. P. Films, Gels, Polymer Systems for Ionizing Radiation Dosimetry and Radiotherapy. Smart Stimuli‐Responsive Polymers, Films, and Gels. 2022, 135–155. DOI: 10.1002/9783527832385.ch3.
  • Soni, K. S.; Desale, S. S.; Bronich, T. K. J. J. O. C. R. Nanogels: An Overview of Properties, Biomedical Applications and Obstacles to Clinical Translation. J. Controlled Release. 2016, 240, 109–126. DOI: 10.1016/j.jconrel.2015.11.009.
  • Stock, S.; von Klitzing, R. J. C. O. I. C.; Science, I. Microgels at Droplet Interfaces of Water-In-Oil Emulsions—Challenges and Progress. Curr. Opin. Colloid Interface Sci. 2022, 58, 101561. DOI: 10.1016/j.cocis.2021.101561.
  • Thakur, G.; Rodrigues, F. C.; Dathathri, E.; Nayak, S. K.; Pal, K. J. P. G. Protein-Based Gels: Preparation, Characterizations, Applications in Drug Delivery, and Tissue Engineering. Polymeric gels. 2018, 31–54.
  • Hu, J.-P.; Wu, Z.-X.; Xie, T.; Liu, X.-Y.; Yan, X.; Sun, X.; Liu, W.; Liang, L.; He, G.; Gan, Y. J. P., et al. Applications of Molecular Simulation in the Discovery of Antituberculosis Drugs: A Review. Protein. & Peptide Letters. 2019, 26(9), 648–663. DOI: 10.2174/0929866526666190620145919.
  • Malmsten, M. J. S. M. Soft Drug Delivery Systems. Soft Matter. 2006, 2(9), 760–769. DOI: 10.1039/b608348j.
  • Jaeghere, F.; Allémann, E.; Feijen, J.; Kissel, T.; Doelker, E.; Gurny, R. J. J. O. D. T. Cellular Uptake of PEO Surface-Modified Nanoparticles: Evaluation of Nanoparticles Made of PLA: PEO Diblock and Triblock Copolymers. J. Drug Targeting. 2000, 8(3), 143–153. DOI: 10.3109/10611860008996860.
  • Amiri, M.; Salavati-Niasari, M.; Akbari, A. J. A. I. C.; Science, I. Magnetic Nanocarriers: Evolution of Spinel Ferrites for Medical Applications. Adv. Colloid and Interface Sci. 2019, 265, 29–44. DOI: 10.1016/j.cis.2019.01.003.
  • Das, M.; Zhang, H.; Kumacheva, E. J. A. R. M. R. Microgels: Old Materials with New Applications. Annual Review Of Materials Research. 2006, 36(1), 117–142. DOI: 10.1146/annurev.matsci.36.011205.123513.
  • Nolan, C. M.; Gelbaum, L. T.; Lyon, L. A. J. B. H NMR Investigation of Thermally Triggered Insulin Release from Poly (N-Isopropylacrylamide) Microgels. Biomacromolecules. 2006, 7(10), 2918–2922. DOI: 10.1021/bm060718s.
  • Elashnikov, R.; Slepička, P.; Rimpelova, S.; Ulbrich, P.; Švorčík, V.; Lyutakov, O. J. M. S.; C, E. Temperature-Responsive PLLA/PNIPAM Nanofibers for Switchable Release. Mater. Sci. Eng. C. 2017, 72, 293–300. DOI: 10.1016/j.msec.2016.11.028.
  • Eichenbaum, G. M.; Kiser, P. F.; Dobrynin, A. V.; Simon, S. A.; Needham, D. J. M. Investigation of the Swelling Response and Loading of Ionic Microgels with Drugs and Proteins: The Dependence on Cross-Link Density. Macromolecules. 1999, 32(15), 4867–4878. DOI: 10.1021/ma981945s.
  • Tan, J. P.; Tam, K. C. J. J. O. C. R. Application of Drug Selective Electrode in the Drug Release Study of pH-Responsive Microgels. J. Controlled Release. 2007, 118(1), 87–94. DOI: 10.1016/j.jconrel.2006.11.017.
  • Ramesh Babu, V.; Krishna Rao, K.; Sairam, M.; Naidu, B. V. K.; Hosamani, K. M.; Aminabhavi, T. M. J. J. O. A. P. S., pH sensitive Interpenetrating Network Microgels of Sodium Alginate‐Acrylic Acid for the Controlled Release of Ibuprofen. J. Appl. Polym. Sci. 2006, 99(5), 2671–2678. DOI: 10.1002/app.22760.
  • Patnaik, S.; Sharma, A. K.; Garg, B.; Gandhi, R.; Gupta, K. J. I. J. O. P. Photoregulation of Drug Release in Azo-Dextran Nanogels. Int. J. Pharmaceutics. 2007, 342(1–2), 184–193. DOI: 10.1016/j.ijpharm.2007.04.038.
  • Skirtach, A. G.; Dejugnat, C.; Braun, D.; Susha, A. S.; Rogach, A. L.; Parak, W. J.; Möhwald, H.; Sukhorukov, G. B. J. N. L. The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials. Nano Lett. 2005, 5(7), 1371–1377. DOI: 10.1021/nl050693n.
  • Angelatos, A. S.; Radt, B.; Caruso, F. J. T. J. O. P. C. B. Light-Responsive Polyelectrolyte/Gold Nanoparticle Microcapsules. The Journal of Physical Chemistry B. 2005, 109(7), 3071–3076. DOI: 10.1021/jp045070x.
  • Radt, B.; Smith, T. A.; Caruso, F. J. A. M. Optically Addressable Nanostructured Capsules. Adv. Mater. 2004, 16(23‐24), 2184–2189. DOI: 10.1002/adma.200400920.
  • Uthaman, S.; Pillarisetti, S.; Mathew, A. P.; Kim, Y.; Bae, W. K.; Huh, K. M.; Park, I.-K. J. B. Long Circulating Photoactivable Nanomicelles with Tumor Localized Activation and ROS Triggered Self-Accelerating Drug Release for Enhanced Locoregional Chemo-Photodynamic Therapy. Biomaterials. 2020, 232, 119702. DOI: 10.1016/j.biomaterials.2019.119702.
  • Bysell, H.; Månsson, R.; Hansson, P.; Malmsten, M. J. A. D. D. R. Microgels and Microcapsules in Peptide and Protein Drug Delivery. Advanced Drug Delivery Reviews. 2011, 63(13), 1172–1185. DOI: 10.1016/j.addr.2011.08.005.
  • Kamperman, T.; Karperien, M.; Le Gac, S.; Leijten, J. J. T. I. B. Single-Cell Microgels: Technology, Challenges, and Applications. Trends Biotechnology. 2018, 36(8), 850–865. DOI: 10.1016/j.tibtech.2018.03.001.
  • Li, Y.; de Vries, R.; Slaghek, T.; Timmermans, J.; Cohen Stuart, M. A.; Norde, W. J. B. Preparation and Characterization of Oxidized Starch Polymer Microgels for Encapsulation and Controlled Release of Functional Ingredients. Biomacromolecules. 2009, 10(7), 1931–1938. DOI: 10.1021/bm900337n.
  • Chen, N.; Nicolai, T.; Chassenieux, C.; Wang, Y. J. F. H., pH and Ionic Strength Responsive Core-Shell Protein Microgels Fabricated via Simple Coacervation of Soy Globulins. Food Hydrocolloids. 2020, 105, 105853. DOI: 10.1016/j.foodhyd.2020.105853.
  • Li, Y.; Vries, R. D.; Kleijn, M.; Slaghek, T.; Timmermans, J.; Stuart, M. C.; Norde, W. J. B. Lysozyme Uptake by Oxidized Starch Polymer Microgels. Biomacromolecules. 2010, 11(7), 1754–1762. DOI: 10.1021/bm100206k.
  • Johansson, C.; Hansson, P.; Malmsten, M. J. J. O. C. Interaction Between Lysozyme and Poly (Acrylic Acid) Microgels. Science. 2007, 316(2), 350–359. DOI: 10.1016/j.jcis.2007.07.052.
  • Hansson, P. J. G. Volume Transition and Phase Coexistence in Polyelectrolyte Gels Interacting with Amphiphiles and Proteins. Gels. 2020, 6(3), 24. DOI: 10.3390/gels6030024.
  • Mohanty, A.; Jena, S. S.; Behera, R. K. J. B. Kinetics of Ferritin Self-Assembly by Laser Light Scattering: Impact of Subunit Concentration, pH, and Ionic Strength. Biomacromolecules. 2021, 22(4), 1389–1398. DOI: 10.1021/acs.biomac.0c01562.
  • Johansson, C.; Hansson, P. J. S. M. Distribution of Cytochrome C in Polyacrylate Microgels. Soft Matter. 2010, 6(16), 3970–3978. DOI: 10.1039/c0sm00072h.
  • Weissig, V.; Guzman-Villanueva, D. Nanopharmaceuticals (Part 2): Products in the Pipeline. Int. J. Nanomedicine. 2015, 10, 1245. DOI: 10.2147/IJN.S65526.
  • Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M. R. Nanopharmaceuticals and Nanomedicines Currently on the Market: Challenges and Opportunities. Nanomed. 2019, 14(1), 93–126. DOI: 10.2217/nnm-2018-0120.
  • Borges, B. J.; Carminati, L. S.; Fernandes, P. M.; Fernandes, A. A. R. Regulatory Framework of Nanopharmaceuticals in Developing Countries: An Analysis of the Current Rules in Brazil. In Inorganic Frameworks as Smart Nanomedicines. 2018,William Andrew Publishing. pp. 605–639. DOI: 10.1016/B978-0-12-813661-4.00014-6.
  • Elzoghby, A. O.; Vranic, B. Z.; Samy, W. M.; Elgindy, N. A. Swellable Floating Tablet Based on Spray-Dried Casein Nanoparticles: Near-Infrared Spectral Characterization and Floating Matrix Evaluation. Int. J. Pharmaceutics. 2015, 491(1–2), 113–122. DOI: 10.1016/j.ijpharm.2015.06.015.
  • Wynn, D. R. Enduring Clinical Value of Copaxone®(glatiramer Acetate) in Multiple Sclerosis After 20 Years of Use. Multiple Sclerosis International. 2019, 2019, 1–19. DOI: 10.1155/2019/7151685.
  • Cobb, P. W.; Moon, Y. W.; Mezei, K.; Láng, I.; Bhat, G.; Chawla, S.; Hasal, S. J., Schwartzberg, L. S. A Comparison of Eflapegrastim to Pegfilgrastim in the Management of Chemotherapy‐Induced Neutropenia in Patients with Early‐Stage Breast Cancer Undergoing Cytotoxic Chemotherapy (RECOVER): A Phase 3 Study. CAN-Med Healthcare. 2020, 9(17), 6234–6243. DOI: 10.1002/cam4.3227.
  • Hauptstein, N.; Meinel, L.; Lühmann, T. Bioconjugation Strategies and Clinical Implications of Interferon-Bioconjugates. Eur. J. Pharm. Biopharm. 2022, 172, 157–167. DOI: 10.1016/j.ejpb.2022.02.006.
  • Gadekar, V.; Borade, Y.; Kannaujia, S.; Rajpoot, K.; Anup, N.; Tambe, V.; Tekade, R. K. Nanomedicines Accessible in the Market for Clinical Interventions. J. Controlled Release. 2021, 330, 372–397. DOI: 10.1016/j.jconrel.2020.12.034.
  • Liu, X.; Jiang, J.; Meng, H. Transcytosis-An Effective Targeting Strategy That is Complementary to “EPR effect” for Pancreatic Cancer Nano Drug Delivery. Theranostics. 2019, 9(26), 8018. DOI: 10.7150/thno.38587.
  • Aldughaim, M. S.; Muthana, M.; Alsaffar, F.; Barker, M. D. Specific Targeting of PEGylated Liposomal Doxorubicin (Doxil®) to Tumour Cells Using a Novel TIMP3 Peptide. Molecules. 2020, 26(1), 100. DOI: 10.3390/molecules26010100.
  • Baú, F. B. C. J. L.; Vilas-Boas, C. R. R. Sixty Years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infectious Diseases and Therapy. 2021, 10, 115–147.
  • Sharma, P.; Mittal, S. Nanotechnology: Revolutionizing the Delivery of Drugs to Treat Age-Related Macular Degeneration. Expert Opinion on Drug Delivery. 2021, 18(8), 1131–1149. DOI: 10.1080/17425247.2021.1888925.
  • Dhiware, P.; Jaiswar, S.; Giri, A. G. Paclitaxel: Significance and Awareness. Proceeding Of. April, 2021, 57.
  • Rodríguez, F.; Caruana, P.; De la Fuente, N.; Español, P.; Gámez, M.; Balart, J.; Céspedes, M. V. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules. 2022, 12(6), 784. DOI: 10.3390/biom12060784.