1,010
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison of phenolic composition in date (Phoenix dactylifera L.) flesh and seeds extracted by an ultrasonic-assisted and conventional method

, , , ORCID Icon, , & show all
Pages 2939-2962 | Received 09 May 2023, Accepted 18 Sep 2023, Published online: 06 Oct 2023

References

  • Baliga, M. S.; Baliga, B. R. V.; Kandathil, S. M.; Bhat, H. P.; Vayalil, P. K. A Review of the Chemistry and Pharmacology of the Date Fruits (Phoenix Dactylifera L.). Food Res. Int. 2011, 44(7), 1812–1822.
  • He, X.; Sun, L.-M. Dietary Intake of Flavonoid Subclasses and Risk of Colorectal Cancer: Evidence from Population Studies. Oncotarget. 2016, 7(18), 26617.
  • Olejar, K. J.; Fedrizzi, B.; Kilmartin, P. A. Influence of Harvesting Technique and Maceration Process on Aroma and Phenolic Attributes of Sauvignon Blanc Wine. Food Chem. 2015, 183, 181–189.
  • Sticher, O. Natural Product Isolation. Nat. Prod. Rep. 2008, 25(3), 517–554.
  • Maghsoudlou, Y.; Asghari Ghajari, M.; Tavasoli, S. Effects of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Quince Fruit and Its Tisane’s Sensory Properties. J. Food Sci. Technol. 2019, 56(5), 2365–2372.
  • Spigno, G.; De Faveri, D. Microwave-Assisted Extraction of Tea Phenols: A Phenomenological Study. J. Food Eng. 2009, 93(2), 210–217.
  • Sunarso, J.; Ismadji, S. Decontamination of Hazardous Substances from Solid Matrices and Liquids Using Supercritical Fluids Extraction: A Review. J. Hazard. Mater. 2009, 161(1), 1–20. DOI: 10.1016/j.jhazmat.2008.03.069.
  • Monnier, H.; Wilhelm, A.-M.; Delmas, H. Influence of Ultrasound on Mixing on the Molecular Scale for Water and Viscous Liquids. Ultrason. Sonochem. 1999, 6(1–2), 67–74. DOI: 10.1016/s1350-4177(98)00034-0.
  • Vinatoru, M. An Overview of the Ultrasonically Assisted Extraction of Bioactive Principles from Herbs. Ultrason. Sonochem. 2001, 8(3), 303–313.
  • Meregalli, M. M.; Puton, B. M. S.; Camera, F. D. M.; Amaral, A. U.; Zeni, J.; Cansian, R. L.; Mignoni, M. L.; Backes, G. T. Conventional and Ultrasound-Assisted Methods for Extraction of Bioactive Compounds from Red araçá Peel (Psidium Cattleianum Sabine). Arabian J. Chem. 2020, 13(6), 5800–5809.
  • El-Kholy, W. M.; Soliman, T. N.; Darwish, A. M. G. Evaluation of Date Palm Pollen (Phoenix Dactylifera L.) Encapsulation, Impact on the Nutritional and Functional Properties of Fortified Yoghurt. Plos One. 2019, 14(10), e0222789.
  • Turkmen, N.; Sari, F.; Velioglu, Y. S. Effects of Extraction Solvents on Concentration and Antioxidant Activity of Black and Black Mate Tea Polyphenols Determined by Ferrous Tartrate and Folin–Ciocalteu Methods. Food Chem. 2006, 99(4), 835–841.
  • Iloki-Assanga, S. B.; Lewis-Luján, L. M.; Lara-Espinoza, C. L.; Gil-Salido, A. A.; Fernandez-Angulo, D.; Rubio-Pino, J. L.; Haines, D. D. Solvent Effects on Phytochemical Constituent Profiles and Antioxidant Activities, Using Four Different Extraction Formulations for Analysis of Bucida Buceras L. and Phoradendron Californicum. BMC Res. Notes. 2015, 8(1), 1–14.
  • Liu, S.-C.; Lin, J.-T.; Wang, C.-K.; Chen, H.-Y.; Yang, D.-J. Antioxidant Properties of Various Solvent Extracts from Lychee (Litchi Chinenesis Sonn.) Flowers. Food Chem. 2009, 114(2), 577–581.
  • Chaira, N.; Smaali, M. I.; Martinez-Tomé, M.; Mrabet, A.; Murcia, M. A.; Ferchichi, A. Simple Phenolic Composition, Flavonoid Contents and Antioxidant Capacities in Water-Methanol Extracts of Tunisian Common Date Cultivars (Phoenix Dactylifera L.). Int. J. Food Sci. Nutr. 2009, 60(sup7), 316–329.
  • Khallouki, F.; Ricarte, I.; Breuer, A.; Owen, R. W. Characterization of Phenolic Compounds in Mature Moroccan Medjool Date Palm Fruits (Phoenix dactylifera) by HPLC-DAD-ESI-MS. J. Food Compost. Anal. 2018, 70, 63–71.
  • Almusallam, I. A.; Ahmed, I. A. M.; Babiker, E. E.; Al Juhaimi, F. Y.; Fadimu, G. J.; Osman, M. A.; Ai Maiman, S. A.; Ghafoor, K.; Alqah, H. A. Optimization of Ultrasound-Assisted Extraction of Bioactive Properties from Date Palm (Phoenix Dactylifera L.) Spikelets Using Response Surface Methodology. LWT. 2021, 140, 110816.
  • John, J. A.; Shahidi, F. Phenolic Content, Antioxidant and Anti-Inflammatory Activities of Seeds and Leaves of Date Palm (Phoenix Dactylifera L.). J. Food Bioactives. 2019, 5, 120–130.
  • Pakkish, Z.; Mohammadrezakhani, S. Comparison of Phytochemicals and Their Antioxidant Activity in Seven Date Palm Varieties Grown in Iran. Int. J. Food Prop. 2020, 23(1), 1766–1776.
  • Peng, D.; Zahid, H. F.; Ajlouni, S.; Dunshea, F. R.; Suleria, H. A. LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities. Processes. 2019, 7(10), 764.
  • Jakovljev, A.; Bergh, K. Development of a Rapid and Simplified Protocol for Direct Bacterial Identification from Positive Blood Cultures by Using Matrix Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry. BMC Microbiol. 2015, 15(1), 1–8.
  • Kılıç, C.; Can, Z.; Yılmaz, A.; Yıldız, S.; Turna, H. Antioxidant Properties of Some Herbal Teas (Green Tea, Senna, Corn Silk, Rosemary) Brewed at Different Temperatures. Int. J. Sec. Metabo. 2017, 4(3), 142–148.
  • Stavrou, I. J.; Christou, A.; Kapnissi-Christodoulou, C. P. Polyphenols in Carobs: A Review on Their Composition, Antioxidant Capacity and Cytotoxic Effects, and Health Impact. Food Chem. 2018, 269, 355–374.
  • Price, M. L.; Van Scoyoc, S.; Butler, L. G. A Critical Evaluation of the Vanillin Reaction as an Assay for Tannin in Sorghum Grain. J. Agric. Food Chem. 1978, 26(5), 1214–1218.
  • Montavon, P.; Bortlik, K. Evolution of Robusta Green Coffee Redox Enzymatic Activities with Maturation. J. Agric. Food Chem. 2004, 52(11), 3590–3594.
  • Benzie, I. F.; Szeto, Y. Total Antioxidant Capacity of Teas by the Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 1999, 47(2), 633–636.
  • Lee, J.; Hwang, K. T.; Chung, M. Y.; Cho, D. H.; Park, C. S. Resistance of Lactobacillus Casei Kctc 3260 to Reactive Oxygen Species (ROS): Role for a Metal Ion Chelating Effect. J. Food Sci. 2005, 70(8), m388–m391.
  • Del Castillo, M. D.; Ames, J. M.; Gordon, M. H. Effect of Roasting on the Antioxidant Activity of Coffee Brews. J. Agric. Food Chem. 2002, 50(13), 3698–3703.
  • Hernández-Ledesma, B.; Amigo, L.; Netto, F. M.; Miralles, B. Identification of Peptides Released from Flaxseed (Linum usitatissimum) Protein by alcalase® Hydrolysis: Antioxidant Activity. Lebensmittel-Wissenschaft+[ie und] Technologie. 2017.
  • Oyaizu, M. Studies on Products of Browning Reaction Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. Diet. 1986, 44(6), 307–315.
  • Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity Through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269(2), 337–341.
  • Gu, C.; Howell, K.; Dunshea, F. R.; Suleria, H. A. LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities. Antioxidants. 2019, 8(9), 405. DOI: 10.3390/antiox8090405.
  • Schieber, A.; Keller, P.; Streker, P.; Klaiber, I.; Carle, R. Detection of Isorhamnetin Glycosides in Extracts of Apples (malus domestica cv.“Brettacher”) by HPLC‐PDA and HPLC‐APCI‐MS/MS. Phytochem. Anal. 2002, 13(2), 87–94.
  • Allaith, A. Antioxidants in Date Fruits and the Extent of the Variability of the Total Phenolic Content: Review and Analysis. Antioxidants. 2019, 1–15.
  • Salomón-Torres, R.; Ortiz-Uribe, N.; Valdez-Salas, B.; Rosas-González, N.; García-González, C.; Chávez, D.; Córdova-Guerrero, I.; Díaz-Rubio, L.; Haro-Vázquez, M. P.; Mijangos-Montiel, J. L., et al. Nutritional Assessment, Phytochemical Composition and Antioxidant Analysis of the Pulp and Seed of Medjool Date Grown in Mexico. PeerJ. 2019, 7, e6821.
  • Awad, M. A.; Al-Qurashi, A. D.; Mohamed, S. A. Antioxidant Capacity, Antioxidant Compounds and Antioxidant Enzyme Activities in Five Date Cultivars During Development and Ripening. Sci. Hortic. 2011, 129(4), 688–693.
  • Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date Fruit (Phoenix Dactylifera L.): An Underutilized Food Seeking Industrial Valorization. Nfs J. 2017, 6, 1–10.
  • El-Mergawi, R.; Al-Humaid, A.; El-Rayes, D. Phenolic Profiles and Antioxidant Activity in Seeds of ten Date Cultivars from Saudi Arabia. J. Food Agric. Environ. 2016, 14(2), 38–43.
  • Adjimani, J. P.; Asare, P. Antioxidant and Free Radical Scavenging Activity of Iron Chelators. Toxicol. Rep. 2015, 2, 721–728. DOI: 10.1016/j.toxrep.2015.04.005.
  • Marathe, S. A.; Rajalakshmi, V.; Jamdar, S. N.; Sharma, A. Comparative Study on Antioxidant Activity of Different Varieties of Commonly Consumed Legumes in India. Food Chem. Toxicol. 2011, 49(9), 2005–2012.
  • Liu, H.; Jiao, Z.; Liu, J.; Zhang, C.; Zheng, X.; Lai, S.; Chen, F.; Yang, H. Optimization of Supercritical Fluid Extraction of Phenolics from Date Seeds and Characterization of Its Antioxidant Activity. Food Anal. Methods. 2013, 6(3), 781–788.
  • Yu, G.; Zhang, S.-J.; Fan, M.-C.; Sun, Y.-N.; Hu, X.-L.; Li, W.-X. Ultrasound-Assisted Extraction and Comparison of Extraction Methods Based on Antioxidant Activities of Polysaccharides from Flammulina Velutipes. J. Food Meas. Charact. 2017, 11(4), 1752–1760.
  • Zhao, M.; Yang, B.; Wang, J.; Li, B.; Jiang, Y. Identification of the Major Flavonoids from Pericarp Tissues of Lychee Fruit in Relation to Their Antioxidant Activities. Food Chem. 2006, 98(3), 539–544.
  • Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A. J.; Saéz, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic Profile of Grape Canes: Novel Compounds Identified by LC-ESI-LTQ-Orbitrap-MS. Molecules. 2019, 24(20), 3763.
  • Ma, C.; Dunshea, F. R.; Suleria, H. A. LC-ESI-QTOF/MS Characterization of Phenolic Compounds in Palm Fruits (Jelly and Fishtail Palm) and Their Potential Antioxidant Activities. Antioxidants. 2019, 8(10), 483.
  • Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant Activity of Phenolic Acids and Their Metabolites: Synthesis and Antioxidant Properties of the Sulfate Derivatives of Ferulic and Caffeic Acids and of the Acyl Glucuronide of Ferulic Acid. J. Agric. Food Chem. 2012, 60(50), 12312–12323.
  • Al Juhaimi, F.; Özcan, M. M.; Uslu, N.; Ghafoor, K.; Babiker, E. E.; Mohamed Ahmed, I. A. Bioactive Properties, Fatty Acid Compositions, and Phenolic Compounds of Some Date Palm (Phoenix Dactylifera L.) Cultivars. J. Food Process. Preserv. 2020, 44(5), e14432.
  • Wang, X.; Liu, J.; Zhang, A.; Sun, H.; Zhang, Y. Systematic Characterization of the Absorbed Components of Acanthopanax Senticosus Stem. In Serum pharmacochemistry of traditional chinese medicine; Wang, X., Ed. Elsevier, 2017; pp. 313–336.
  • Alayed, A. Integrated Mass Spectrometry Approach to Screening of Phenolic Molecules in Hyphaene Thebiaca Fruits with Their Antiradical Activity by Thin-Layer Chromatography. Indian J. Chem. Technol. 2016, 22(3–4), 155–161.
  • Wang, J.; Jia, Z.; Zhang, Z.; Wang, Y.; Liu, X.; Wang, L.; Lin, R. Analysis of Chemical Constituents of Melastoma Dodecandrum Lour. By UPLC-ESI-Q-Exactive Focus-MS/MS. Molecules. 2017, 22(3), 476.
  • Suleria, H. A.; Barrow, C. J.; Dunshea, F. R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods. 2020, 9(9), 1206.
  • Lin, H.; Zhu, H.; Tan, J.; Wang, H.; Wang, Z.; Li, P.; Zhao, C.; Liu, J. Comparative Analysis of Chemical Constituents of Moringa Oleifera Leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules. 2019, 24(5), 942.
  • Lin, L.-Z.; Harnly, J. M. Identification of Hydroxycinnamoylquinic Acids of Arnica Flowers and Burdock Roots Using a Standardized LC-DAD-ESI/MS Profiling Method. J. Agric. Food Chem. 2008, 56(21), 10105–10114.
  • Vukovic, N.; Vukić, M.; Đelić, G.; Kacaniova, M.; Cvijović, M. The Investigation of Bioactive Secondary Metabolites of the Methanol Extract of Eryngium Amethystinum. Kragujevac J. Sci. 2018, 40, 113–129.
  • Mansouri, A.; Embarek, G.; Kokkalou, E.; Kefalas, P. Phenolic Profile and Antioxidant Activity of the Algerian Ripe Date Palm Fruit (Phoenix dactylifera). Food Chem. 2005, 89(3), 411–420.
  • Sheikh, B. Y.; Zihad, S. M. N. K.; Sifat, N.; Uddin, S. J.; Shilpi, J. A.; Hamdi, O. A. A.; Hossain, H.; Rouf, R.; Jahan, I. A. Comparative Study of Neuropharmacological, Analgesic Properties and Phenolic Profile of Ajwah, Safawy and Sukkari Cultivars of Date Palm (Phoenix dactylifera). Orient. Pharm. Exp. Med. 2016, 16(3), 175–183.
  • Abu-Reidah, I. M.; Ali-Shtayeh, M. S.; Jamous, R. M.; Arráez-Román, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/ms Screening of Bioactive Components from Rhus Coriaria L.(sumac) Fruits. Food Chem. 2015, 166, 179–191. DOI: 10.1016/j.foodchem.2014.06.011.
  • Sasot, G.; Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Mercader-Martí, M.; Estruch, R.; Lamuela-Raventós, R. M. Identification of Phenolic Metabolites in Human Urine After the Intake of a Functional Food Made from Grape Extract by a High Resolution Ltq-Orbitrap-Ms Approach. Food Res. Int. 2017, 100, 435–444.
  • Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine After Oral Administration of Exocarpium Citri Grandis Extract. Molecules. 2018, 23(4), 895.
  • Getasetegn, M. Chemical Composition of Catha Edulis (Khat): A Review. Phytochem. Rev. 2016, 15(5), 907–920.
  • Liao, M.; Cheng, X.; Zhang, X.; Diao, X.; Liang, C.; Zhang, L. Qualitative and Quantitative Analyses of Active Constituents in Trollius Ledebourii. J. Chromatogr. Sci. 2018, 56(7), 619–635. DOI: 10.1093/chromsci/bmy035.
  • Singh, V.; Guizani, N.; Essa, M.; Hakkim, F.; Rahman, M. Comparative Analysis of Total Phenolics, Flavonoid Content and Antioxidant Profile of Different Date Varieties (Phoenix Dactylifera L.) from Sultanate of Oman. Int. Food Res. J. 2012, 19(3), 1063.
  • Lin, L.-Z.; Mukhopadhyay, S.; Robbins, R. J.; Harnly, J. M. Identification and Quantification of Flavonoids of Mexican Oregano (Lippia graveolens) by LC-DAD-ESI/MS Analysis. J. Food Compost. Anal. 2007, 20(5), 361–369. DOI: 10.1016/j.jfca.2006.09.005.
  • Riethmüller, E.; Tóth, G.; Alberti, Á.; Végh, K.; Burlini, I.; Könczöl, Á.; Balogh, G. T.; Kéry, Á. First Characterisation of Flavonoid- and Diarylheptanoid-Type Antioxidant Phenolics in Corylus Maxima by HPLC-DAD-ESI-MS. J. Pharm. Biomed. Anal. 2015, 107, 159–167. DOI: 10.1016/j.jpba.2014.12.016.
  • Li, Z.; Zhang, X.; Liao, J.; Fan, X.; Cheng, Y. An Ultra-Robust Fingerprinting Method for Quality Assessment of Traditional Chinese Medicine Using Multiple Reaction Monitoring Mass Spectrometry. J. Pharm. Anal. 2021, 11(1), 88–95.
  • Hussain, F.; Jahan, N.; Rahman, K.-U.; Sultana, B.; Jamil, S. Identification of Hypotensive Biofunctional Compounds of Coriandrum Sativum and Evaluation of Their Angiotensin-Converting Enzyme (Ace) Inhibition Potential. Oxid. Med. Cell. Longev. 2018, 2018, 4643736.
  • Wan, M.; Zhang, Y.; Yang, Y.; Liu, X.; Jia, L.; Yang, X. Analysis of the Chemical Composition of Angelicae Pubescentis Radix by Ultra-Performance Liquid Chromatography and Quadrupole Time-Of-Flight Tandem Mass Spectrometry. J. Chin. Pharm. Sci. 2019, 28(3), 145.
  • Wang, Y.; Vorsa, N.; Harrington, P. D. B.; Chen, P. Nontargeted Metabolomic Study on Variation of Phenolics in Different Cranberry Cultivars Using UPLC-IM–HRMS. J. Agric. Food Chem. 2018, 66(46), 12206–12216.
  • Jain, P.; Kharya, M.; Gajbhiye, A.; Sara, U.; Sharma, V. Flavonoids as Nutraceuticals. A Review. Herba Polonica. 2010, 56(2), 105–117.
  • Chemat, S.; Lagha, A.; AitAmar, H.; Bartels, P. V.; Chemat, F. Comparison of Conventional and Ultrasound‐Assisted Extraction of Carvone and Limonene from Caraway Seeds. Flavour Fragr. J. 2004, 19(3), 188–195.
  • Boots, A. W.; Haenen, G. R.; Bast, A. Health Effects of Quercetin: From Antioxidant to Nutraceutical. Eur. J. Pharmacol. 2008, 585(2–3), 325–337. DOI: 10.1016/j.ejphar.2008.03.008.
  • Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S. I.; Chun, O. K. Comparison of ABTS/DPPH Assays to Measure Antioxidant Capacity in Popular Antioxidant-Rich Us Foods. J. Food Compost. Anal. 2011, 24(7), 1043–1048.