2,024
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Cereal and legume protein edible films: a sustainable alternative to conventional food packaging

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3197-3213 | Received 26 Jul 2023, Accepted 03 Oct 2023, Published online: 09 Nov 2023

References

  • Pilevar, Z.; Bahrami, A.; Beikzadeh, S.; Hosseini, H.; Mahdi Jafari, S. Migration of Styrene Monomer from Polystyrene Packaging Materials into Foods: Characterization and Safety Evaluation. Trends Food Sci. Technol. 2019, 91, 248–261. DOI: 10.1016/j.tifs.2019.07.020.
  • Basu, A.; Kundu, S.; Sana, S.; Halder, A.; Farooque Abdullah, M.; Datta, S.; Mukherjee, A. Edible Nano-Bio-Composite Film Cargo Device for Food Packaging Applications. Food Pack. Shelf Life. 2017, 11, 98–105. DOI: 10.1016/j.fpsl.2017.01.011.
  • Sartori, T.; Feltre, G.; Sobral, P. J. D. A.; da Cunha, R. L.; Menegalli, F. C. Properties of Films Produced from Blends of Pectin and Gluten. Food Pack. Shelf Life. 2018, 18, 221–229. DOI: 10.1016/j.fpsl.2018.11.007.
  • Petkoska, A. T.; Daniloski, D.; D’Cunha, N. M.; Naumovski, N.; Broach, A. T. Edible Packaging: Sustainable Solutions and Novel Trends in Food Packaging. Food Res. Int. 2021, 140, 109981. DOI: 10.1016/j.foodres.2020.109981.
  • Arvanitoyannis, I. S.; Bosnéa, L. Migration of Substances from Food Packaging Materials to Foods. Crit. Rev. Food Sci. Nutr. 2004, 44(2), 63–76. DOI: 10.1080/10408690490424621.
  • Vera, P.; Canellas, E.; Nerín, C. Compounds Responsible for Off-Odors in Several Samples Composed by Polypropylene, Polyethylene, Paper and Cardboard Used as Food Packaging Materials. Food Chem. 2020, 309, 125792. DOI: 10.1016/j.foodchem.2019.125792.
  • Zhang, Y.; Du, Z.; Xia, X.; Guo, Q.; Huijie, W.; Wenlian, Y. Evaluation of the Migration of UV-Ink Photoinitiators from Polyethylene Food Packaging by Supercritical Fluid Chromatography Combined with Photodiode Array Detector and Tandem Mass Spectrometry. Polym. Test. 2016, 53, 276–282. DOI: 10.1016/j.polymertesting.2016.06.008.
  • Chang, N.; Zhang, C.-H.; Zheng, F.-E.; Huang, Y.-L.; Zhu, J.-Y.; Zhou, Q.; Zhou, X.; Shu-Juan, J. Migration of Toluene Through Different Plastic Laminated Films into Food Simulants. Food Control. 2016, 59, 164–171. DOI: 10.1016/j.foodcont.2015.04.042.
  • Ubeda, S.; Aznar, M.; Kjerstine Rosenmai, A.; Marie Vinggaard, A.; Nerín, C. Migration Studies and Toxicity Evaluation of Cyclic Polyesters Oligomers from Food Packaging Adhesives. Food Chem. 2020, 311, 125918. DOI: 10.1016/j.foodchem.2019.125918.
  • Matta, E.; José Tavera-Quiroz, M.; Bertola, N. Active Edible Films of Methylcellulose with Extracts of Green Apple (Granny Smith) Skin. Int. J. Biol. Macromol. 2019, 124, 1292–1298. DOI: 10.1016/j.ijbiomac.2018.12.114.
  • Sahraee, S.; Milani, J. M.; Regenstein, J. M.; Samadi Kafil, H. Protection of Foods Against Oxidative Deterioration Using Edible Films and Coatings: A Review. Food Biosci. 2019, 32, 100451. DOI: 10.1016/j.fbio.2019.100451.
  • Mila, W.; Moraru, C. I. Physical and Chemical Methods Used to Enhance the Structure and Mechanical Properties of Protein Films: A Review. J. Food Eng. 2013, 114(3), 292–302. DOI: 10.1016/j.jfoodeng.2012.08.021.
  • Zibaei, R.; Hasanvand, S.; Hashami, Z.; Roshandel, Z.; Rouhi, M.; de Toledo Guimarães, J.; Mohammad Mortazavian, A.; Sarlak, Z.; Mohammadi, R. Applications of Emerging Botanical Hydrocolloids for Edible Films: A Review. Carbohydr. Polym. 2021, 256, 117554. DOI: 10.1016/j.carbpol.2020.117554.
  • Pirozzi, A.; Pataro, G.; Donsì, F.; Ferrari, G. Edible Coating and Pulsed Light to Increase the Shelf Life of Food Products. Food Eng. Rev. 2020, 13(3), 544–569. DOI: 10.1007/s12393-020-09245-w.
  • Kouhi, M.; Prabhakaran, M. P.; Ramakrishna, S. Edible Polymers: An Insight into Its Application in Food, Biomedicine and Cosmetics. Trends Food Sci. Technol. 2020, 103, 248–263. DOI: 10.1016/j.tifs.2020.05.025.
  • Puscaselu, R.; Gutt, G.; Amariei, S. The Use of Edible Films Based on Sodium Alginate in Meat Product Packaging: An Eco-Friendly Alternative to Conventional Plastic Materials. Coatings. 2020, 10(2), 166. DOI: 10.3390/coatings10020166.
  • Bourtoom, T. Edible Films and Coatings: Characteristics and Properties. Int. Food Res. J. 2008, 15, 237–248.
  • Embuscado, M.; Huber, K. Edible Films and Coatings for Food Applications. In Springer; Springer, 2009; Vol. 52, pp. 1–5. doi: 10.1007/978-0-387-92824-1.
  • Liao, Y.; Wang, C.; Huang, C.; Yassin Hussain Abdalkarim, S.; Wang, L.; Chen, Z.; Hou Yong, Y. Robust Cellulose/Carboxymethyl Chitosan Composite Films with High Transparency and Antibacterial Ability for Fresh Fruit Preservation. ACS Sustain. Chem. Eng. 2023, 11(15), 5908–5917. DOI: 10.1021/acssuschemeng.2c07362.
  • Castro-Muñoz, R.; Saeed Kharazmi, M.; Mahdi Jafari, S. Chitosan-Based Electrospun Nanofibers for Encapsulating Food Bioactive Ingredients: A Review. Int. J. Biol. Macromol. 2023, 245, 125424. DOI: 10.1016/j.ijbiomac.2023.125424.
  • Qin, C. C.; Yassin Hussain Abdalkarim, S.; Chen Yang, M.; Juan Dong, Y.; Hou Yong, Y.; Dan, G. All-Naturally Structured Tough, Ultrathin, and Washable Dual-Use Composite for Fruits Preservation with High Biosafety Evaluation. Int. J. Biol. Macromol. 2023, 247(928), 125828. DOI: 10.1016/j.ijbiomac.2023.125828.
  • Kocira, A.; Kozłowicz, K.; Panasiewicz, K.; Staniak, M.; Szpunar-Krok, E.; Hortyńska, P. Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality—A Review. Agronomy. 2021, 11(5), 813. DOI: 10.3390/agronomy11050813.
  • Schmid, M.; Pröls, S.; Kainz, D. M.; Hammann, F.; Grupa, U. Effect of Thermally Induced Denaturation on Molecular Interaction-Response Relationships of Whey Protein Isolate Based Films and Coatings. Prog. Org. Coat. 2017, 104, 161–172. DOI: 10.1016/j.porgcoat.2016.11.032.
  • Tsai, M. J.; Ming Weng, Y. Novel Edible Composite Films Fabricated with Whey Protein Isolate and Zein: Preparation and Physicochemical Property Evaluation. LWT. 2019, 101(October 2018), 567–574. DOI: 10.1016/j.lwt.2018.11.068.
  • Baschetti, G. M.; Minelli, M. Test Methods for the Characterization of Gas and Vapor Permeability in Polymers for Food Packaging Application: A Review. Polym. Test. 2020, 89, 106606. DOI: 10.1016/j.polymertesting.2020.106606.
  • Escamilla-García, M.; Calderón-Domínguez, G.; Chanona-Pérez, J.; Mendoza-Madrigal, A.; Di Pierro, P.; García-Almendárez, B.; Amaro-Reyes, A.; Regalado-González, C. Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with Added Essential Oils. Int. J. Mol. Sci. 2017, 18(11), 2370. DOI: 10.3390/ijms18112370.
  • Faris, M. A. I. E.; Attlee, A. Lentils (Lens Culinaris, L.): A Novel Functional Food. In Exploring the Nutrition and Health Benefits of Functional Foods; IGI Global: 2016; pp. 42–72. doi:10.4018/978-1-5225-0591-4.ch003
  • Álvarez-Castillo, E.; Carlos, B.; Manuel, F.; Antonio, G. 2021. “Protein-Based Bioplastics from Biowastes: Sources, Processing, Properties and Applications BT - Bioplastics for Sustainable Development.” Kuddus, M. and Roohi. (Eds.); Springer Singapore: Singapore, pp. 137–176. DOI: 10.1007/978-981-16-1823-9_5.
  • Linares-Castañeda, A.; Olivia Franco-Hernández, M.; Yolanda de las Mercedes Gómez y Gómez; Jorge Corzo-Rios, L.; Gómez y Gómez, Y. D. L. M. Physical Properties of Zein-Alginate-Glycerol Edible Films and Their Application in the Preservation of Chili Peppers (Capsicum Annuum L.). Food Sci. Biotechnol. 2023. DOI: 10.1007/s10068-023-01393-z.
  • López-Monterrubio, D. I.; Lobato-Calleros, C.; Alvarez-Ramirez, J.; Vernon-Carter, E. J. Huauzontle (Chenopodium Nuttalliae Saff.) Protein: Composition, Structure, Physicochemical and Functional Properties. Food Hydrocoll. 2020, 108, 106043. DOI: 10.1016/j.foodhyd.2020.106043.
  • Vlad, M.; Diana Kerezsi, A.; Weber, A.; Gruber-Traub, C.; Jürgen Schmucker, F. A.; Vodnar, D. C.; Vasile Dulf, F.; Ancut, S.; Suharoschi, R.; Lelia Pop, O. Protein-Based Films and Coatings for Food Industry Applications. Polymers. 2021, 13(5), 769. DOI: 10.3390/polym13050769.
  • Bahraminejad, S.; Mousavi, M.; Askari, G.; Gharaghani, M. Effect of Octenylsuccination of Alginate on Structure, Mechanical and Barrier Properties of Alginate-Zein Composite Film. Int. J. Biol. Macromol. 2023, 226, 463–472. DOI: 10.1016/j.ijbiomac.2022.12.019.
  • Chen, G.; Dong, S.; Zhao, S.; Shuhuang, L.; Chen, Y. Improving Functional Properties of Zein Film via Compositing with Chitosan and Cold Plasma Treatment. Ind. Crops Prod. 2019, 129(29), 318–326. DOI: 10.1016/j.indcrop.2018.11.072.
  • Leiva, R.; Felipe, A.; Hernández-Fernández, J.; Ortega Toro, R. Active Films Based on Starch and Wheat Gluten (Triticum Vulgare) for Shelf-Life Extension of Carrots. Polymers. 2022, 14(23), 5077. DOI: 10.3390/polym14235077.
  • Kang, L.; Liang, Q.; Chen, H.; Zhou, Q.; Chi, Z.; Rashid, A.; Haile, M.; Ren, X. Insights into Ultrasonic Treatment on the Properties of Pullulan/Oat Protein/Nisin Composite Film: Mechanical, Structural and Physicochemical Properties. Food Chem. 2023, 402, 134237. DOI: 10.1016/j.foodchem.2022.134237.
  • Maedeh, O.-A.; Gharaghani, M.; Saeid Hosseini, S.; Khodaiyan, F.; Mousavi, M.; Askari, G.; Kennedy, J. F. Effect of Octenylsuccination of Pullulan on Mechanical and Barrier Properties of Pullulan-Chickpea Protein Isolate Composite Film. Food Hydrocoll. 2021, 121, 107047. DOI: 10.1016/j.foodhyd.2021.107047.
  • Negar, H.; Omar-Aziz, M.; Gharaghani, M.; Khodaiyan, F.; Saeid Hosseini, S.; Kennedy, J. F. Effect of Mung Bean Protein Isolate/Pullulan Films Containing Marjoram (Origanum Majorana L.) Essential Oil on Chemical and Microbial Properties of Minced Beef Meat. Int. J. Biol. Macromol. 2022, 201, 318–329. DOI: 10.1016/j.ijbiomac.2022.01.023.
  • Luca, A.; O’Regan, J.; Kelly, A. L.; O’Mahony, J. A. The Composition, Extraction, Functionality and Applications of Rice Proteins: A Review. Trends Food Sci. Technol. 2017, 64, 1–12. DOI: 10.1016/j.tifs.2017.01.008.
  • Wen, M.; Tang, C.-H.; Yang, X.-Q.; Yin, S.-W. “Fabrication and Characterization of Kidney Bean (Phaseolus Vulgaris L.) Protein Isolate–Chitosan Composite Films at Acidic PH.” Food Hydrocoll. 2013, 31(2):237–247. doi: 10.1016/j.foodhyd.2012.10.007.
  • Ochoa-Yepes, O.; Di Giogio, L.; Goyanes, S.; Mauri, A.; Famá, L. Influence of Process (Extrusion/thermo-Compression, Casting) and Lentil Protein Content on Physicochemical Properties of Starch Films. Carbohydr. Polym. 2019, 208, 221–231. DOI: 10.1016/j.carbpol.2018.12.030.
  • Chen, X.; Cui, F.; Hua, Z.; Zhou, Y.; Liu, H.; Xiao, J. Development and Characterization of a Hydroxypropyl Starch/Zein Bilayer Edible Film. Int. J. Biol. Macromol. 2019, 141, 1175–1182. DOI: 10.1016/j.ijbiomac.2019.08.240.
  • Corzo-Rios, L. J.; Solorza-Feria, J.; Betancur-Ancona, D.; Chel-Guerrero, L. Rheological Properties and Gel Strength of Phaseolus Lunatus Protein/Carboxymethylated Flamboyant Gum Systems. International Journal Of Food Science & Technology. 2014, 49(6), 1513–1521. DOI: 10.1111/ijfs.12448.
  • Mozafarpour, R.; Koocheki, A.; Alizadeh Sani, M.; Julian McClements, D.; Mahdavian Mehr, H. Ultrasound-Modified Protein-Based Colloidal Particles: Interfacial Activity, Gelation Properties, and Encapsulation Efficiency. Adv. Coll. Interf. Sci. 2022, 309, 102768. DOI: 10.1016/j.cis.2022.102768.
  • Łupina, K.; Kowalczyk, D.; Zięba, E.; Kazimierczak, W.; Mężyńska, M.; Basiura-Cembala, M.; Ewa Wiącek, A. Edible Films Made from Blends of Gelatin and Polysaccharide-Based Emulsifiers - a Comparative Study. Food Hydrocoll. 2019, 96, 555–567. DOI: 10.1016/j.foodhyd.2019.05.053.
  • Enujiugha, V. N.; Oyinloye, A. M. Protein-Lipid Interactions and the Formation of Edible Films and Coatings. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F. Varelis, P., (Eds.); Academic Press: Oxford, 2019; pp. 478–482. DOI: 10.1016/B978-0-08-100596-5.21477-7.
  • Zhang, H.; Wang, L.; Hanyu, L.; Chi, Y.; Zhang, H.; Xia, N.; Yanqiu, M.; Jiang, L.; Zhang, X. Changes in Properties of Soy Protein Isolate Edible Films Stored at Different Temperatures: Studies on Water and Glycerol Migration. Foods. 2021, 10(8), 1797. DOI: 10.3390/foods10081797.
  • Mohammadian, M.; Waly, M. I.; Moghadam, M.; Emam-Djomeh, Z.; Salami, M.; Akbar Moosavi-Movahedi, A. Nanostructured Food Proteins as Efficient Systems for the Encapsulation of Bioactive Compounds. Food Sci. Hum. Wellness. 2020, 9(3), 199–213. DOI: 10.1016/j.fshw.2020.04.009.
  • Maroufi, Y.; Leila, N. S.; Fallah, A. A.; Mahmoudi, E.; Al-Musawi, M. H.; Ghorbani, M. Soy Protein Isolate/kappa-Carrageenan/cellulose Nanofibrils Composite Film Incorporated with Zenian Essential Oil-Loaded MOFs for Food Packaging. Int. J. Biol. Macromol. 2023, 250, 126176. DOI: 10.1016/j.ijbiomac.2023.126176.
  • Garrido-Galand, S.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. The Potential of Fermentation on Nutritional and Technological Improvement of Cereal and Legume Flours: A Review. Food Res. Int. 2021, 145, 110398. DOI: 10.1016/j.foodres.2021.110398.
  • Tacer-Caba, Z.; Nilufer-Erdil, D.; Yongfeng, A. Chemical Composition of Cereals and Their Products. In Handbook of Food Chemistry; Springer: Berlin, HeidelbergBerlin Heidelberg, 2015; pp. 301–329. DOI: 10.1007/978-3-642-36605-5_33.
  • Zeng, M.; Huang, Y.; Liyuan, L.; Fan, L.; Mangavel, C.; Lourdin, D. Mechanical Properties of Thermo-Moulded Biofilms in Relation to Proteins/Starch Interactions. Food Biophys. 2011, 6(1), 49–57. DOI: 10.1007/s11483-010-9174-z.
  • Corradini, E.; Curti, P.; Meniqueti, A.; Martins, A.; Rubira, A.; Muniz, E. Recent Advances in Food-Packing, Pharmaceutical and Biomedical Applications of Zein and Zein-Based Materials. Int. J. Mol. Sci. 2014, 15(12), 22438–22470. DOI: 10.3390/ijms151222438.
  • Sun, Y.; Liu, Z.; Zhang, L.; Wang, X.; Ling, L. Effects of Plasticizer Type and Concentration on Rheological, Physico-Mechanical and Structural Properties of Chitosan/Zein Film. Int. J. Biol. Macromol. 2020, 143, 334–340. DOI: 10.1016/j.ijbiomac.2019.12.035.
  • Tadele, D. T.; Shorey, R.; Mekonnen, T. H. Fatty Acid Modified Zein Films: Effect of Fatty Acid Chain Length on the Processability and Thermomechanical Properties of Modified Zein Films. Ind. Crops Prod. 2023, 192, 116028. DOI: 10.1016/j.indcrop.2022.116028.
  • Žilić, S.; Barać, M.; Pešić, M.; Dodig, D.; Ignjatović-Micić, D. Characterization of Proteins from Grain of Different Bread and Durum Wheat Genotypes. Int. J. Mol. Sci. 2011, 12(9), 5878–5894. DOI: 10.3390/ijms12095878.
  • Hajikhani, M.; Emam-Djomeh, Z.; Askari, G. Fabrication and Characterization of Gluten Film Reinforced by Lycopene-Loaded Electrospun Polylactic Acid Nano-Fibers. Food Bioprocess. Technol. 2020, 13(12), 2217–2227. DOI: 10.1007/s11947-020-02561-3.
  • Liu, R.; Cong, X.; Song, Y.; Tao, W.; Zhang, M. Edible Gum-Phenolic-Lipid Incorporated Gluten Films for Food Packaging. J. Food Sci. 2018, 83(6), 1622–1630. DOI: 10.1111/1750-3841.14151.
  • Gutiérrez, T.; Julieta, J.; Mendieta, R.; Ortega-Toro, R. In-Depth Study from Gluten/PCL-Based Food Packaging Films Obtained Under Reactive Extrusion Conditions Using Chrome Octanoate as a Potential Food Grade Catalyst. Food Hydrocoll. 2021, 111, 106255. DOI: 10.1016/j.foodhyd.2020.106255.
  • Luca, A.; O’Regan, J.; Kelly, A. L.; O’Mahony, J. A. “The Composition, Extraction, Functionality and Applications of Rice Proteins: A Review.” Trends Food Sci. Technol. 2017. 64, 1–12. Doi: 10.1016/j.tifs.2017.01.008.
  • Shih, F. F. Edible Films from Rice Protein Concentrate and Pullulan. Cereal Chem. 1996, 73(3), 406–409.
  • Wang, A.; Lin, J.; Zhong, Q. Enteric Rice Protein-Shellac Composite Coating to Enhance the Viability of Probiotic Lactobacillus Salivarius NRRL B-30514. Food Hydrocoll. 2021, 113, 106469. DOI: 10.1016/j.foodhyd.2020.106469.
  • Hassan, B.; Ali Shahid Chatha, S.; Ijaz Hussain, A.; Mahmood Zia, K.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. DOI: 10.1016/j.ijbiomac.2017.11.097.
  • Zhang, W.; Liu, C.; Mingren, Q.; Pan, K.; Ouyang, K.; Song, X.; Zhao, X. Characterization of a Recombinant Zein-Degrading Protease from Zea Mays by Pichia Pastoris and Its Effects on Enzymatic Hydrolysis of Corn Starch. Int. J. Biol. Macromol. 2020, 164, 3287–3293. DOI: 10.1016/j.ijbiomac.2020.08.237.
  • Mehvesh, M.; Gani, A.; Gani, A.; Ahmed Punoo, H.; Masoodi, F. A. Use of Pomegranate Peel Extract Incorporated Zein Fi Lm with Improved Properties for Prolonged Shelf Life of Fresh Himalayan Cheese (Kalari/Kradi). Innovative Food Science Emerging Technologies. 2018, 48(February 2017), 25–32. DOI: 10.1016/j.ifset.2018.04.020.
  • Arcan, İ.; Boyacı, D.; Yemenicioğlu, A. The Use of Zein and Its Edible Films for the Development of Food Packaging Materials. Ref. Module Food Sci. 2017, 1–11. DOI: 10.1016/b978-0-08-100596-5.21126-8.
  • Ozcalik, O.; Tihminlioglu, F. Barrier Properties of Corn Zein Nanocomposite Coated Polypropylene Films for Food Packaging Applications. J. Food Eng. 2013, 114(4), 505–513. DOI: 10.1016/j.jfoodeng.2012.09.005.
  • Zhang, L.; Liu, Z.; Han, X.; Sun, Y.; Wang, X. Effect of Ethanol Content on Rheology of Film-Forming Solutions and Properties of Zein/Chitosan Film. Int. J. Biol. Macromol. 2019, 134, 807–814. DOI: 10.1016/j.ijbiomac.2019.05.085.
  • Boyacı, D.; Iorio, G.; Seval Sozbilen, G.; Alkan, D.; Trabattoni, S.; Pucillo, F.; Farris, S.; Yemenicioğlu, A. Development of Flexible Antimicrobial Zein Coatings with Essential Oils for the Inhibition of Critical Pathogens on the Surface of Whole Fruits: Test of Coatings on Inoculated Melons. Food Pack. Shelf Life. 2019, 20(March), 100316. DOI: 10.1016/j.fpsl.2019.100316.
  • Jian, H.; Wang, R.; Feng, W.; Chen, Z.; Wang, T. Design of Novel Edible Hydrocolloids by Structural Interplays Between Wheat Gluten Proteins and Soy Protein Isolates. Food Hydrocoll. 2020, 100, 105395. DOI: 10.1016/j.foodhyd.2019.105395.
  • Rezaei, M.; Pirsa, S.; Chavoshizadeh, S. Photocatalytic/Antimicrobial Active Film Based on Wheat Gluten/ZnO Nanoparticles. J. Inorg. Organomet. Polym. 2020, 30(7), 2654–2665. DOI: 10.1007/s10904-019-01407-6.
  • Rocca-Smith, J. R.; Marcuzzo, E.; Karbowiak, T.; Centa, J.; Giacometti, M.; Scapin, F.; Venir, E.; Sensidoni, A.; Debeaufort, F. Effect of Lipid Incorporation on Functional Properties of Wheat Gluten Based Edible Films. J. Cereal Sci. 2016, 69, 275–282. DOI: 10.1016/j.jcs.2016.04.001.
  • Chavoshizadeh, S.; Pirsa, S.; Mohtarami, F. Conducting/Smart Color Film Based on Wheat Gluten/Chlorophyll/Polypyrrole Nanocomposite. Food Pack. Shelf Life. 2020, 24, 100501. DOI: 10.1016/j.fpsl.2020.100501.
  • Tanada-Palmu, P. S.; Grosso, C. R. F. Effect of Edible Wheat Gluten-Based Films and Coatings on Refrigerated Strawberry (Fragaria Ananassa) Quality. Postharvest. Biol. Technol. 2005, 36(2), 199–208. DOI: 10.1016/j.postharvbio.2004.12.003.
  • Divya, N.; Sakkara, S.; Meenakshi, H. N.; Reddy, N. Properties and Applications of Citric Acid Crosslinked Banana Fibre-Wheat Gluten Films. Ind. Crops Prod. 2018, 124, 265–272. DOI: 10.1016/j.indcrop.2018.07.076.
  • Wunnakup, T.; Monton, C.; Charoenchai, L.; Meksuriyen, D. Physicochemical and Mechanical Properties of Rice Bran Protein Hydrolysate-Loaded Films. Key Eng. Mater. 2020, 859, 9–14. DOI: 10.4028/www.scientific.net/KEM.859.9.
  • Wang, L.; Ding, J.; Fang, Y.; Pan, X.; Fan, F.; Peng, L.; Qiuhui, H. Effect of Ultrasonic Power on Properties of Edible Composite Films Based on Rice Protein Hydrolysates and Chitosan. Ultrason. Sonochem. 2020, 65, 105049. DOI: 10.1016/j.ultsonch.2020.105049.
  • Adebiyi, A. P.; Adebiyi, A. O.; Hao Jin, D.; Ogawa, T.; Muramoto, K. Rice Bran Protein-Based Edible Films. International Journal Of Food Science & Technology. 2008, 43(3), 476–483. DOI: 10.1111/j.1365-2621.2006.01475.x.
  • Shin, Y. J.; Jang, S.-A.; Bin Song, K. Preparation and Mechanical Properties of Rice Bran Protein Composite Films Containing Gelatin or Red Algae. Food Sci. Biotechnol. 2011, 20(3), 703–707. DOI: 10.1007/s10068-011-0099-1.
  • Faris, M. A. I. E.; Attlee, A. Lentils (Lens Culinaris, L.): A Novel Functional Food. Exploring the Nutrition and Health Benefits of Functional Foods. IGI Global. 2016, 42–72. DOI: 10.4018/978-1-5225-0591-4.ch003.
  • Corzo-Ríos, L. J.; Jiménez-Martínez, C.; Cid-Gallegos, M. S.; Cardador-Martínez, A.; Martínez-Herrera, J.; Sánchez-Chino, X. M. Chemical and Non-Nutritional Modification of Faba Bean (Vicia Faba) Due to the Effect of Roasting and Boiling. Int. J. Gastronomy Food Sci. 2022, 30, 100622. DOI: 10.1016/j.ijgfs.2022.100622.
  • Corzo-Ríos, L. J.; Sánchez-Chino, X. M.; Cardador-Martínez, A.; Martínez-Herrera, J.; Jiménez-Martínez, C. Effect of Cooking on Nutritional and Non-Nutritional Compounds in Two Species of Phaseolus (P. Vulgaris and P. Coccineus) Cultivated in Mexico. Int. J. Gastronomy Food Sci. 2020, 20, 100206. DOI: 10.1016/j.ijgfs.2020.100206.
  • Montalvo-Paquini, C.; Avila-Sosa, R.; López-Malo, A.; Palou, E. Preparation and Characterization of Proteinaceous Films from Seven Mexican Common Beans (Phaseolus Vulgaris L.). J. Food Qual. 2018, 2018, 1–8. DOI: 10.1155/2018/9782591.
  • Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and Health Perspectives of Beans (Phaseolus Vulgaris L.): An Overview. Crit. Rev. Food Sci. Nutr. 2014, 54(5), 580–592. DOI: 10.1080/10408398.2011.596639.
  • Wen, M.; Tang, C.-H.; Yang, X.-Q.; Yin, S.-W. Fabrication and Characterization of Kidney Bean (Phaseolus Vulgaris L.) Protein Isolate–Chitosan Composite Films at Acidic PH. Food Hydrocoll. 2013, 31(2), 237–247. DOI: 10.1016/j.foodhyd.2012.10.007.
  • Lei, S.; Xiong, Y. L. Comparative Structural and Emulsifying Properties of Ultrasound-Treated Pea (Pisum Sativum L.) Protein Isolate and the Legumin and Vicilin Fractions. Food Res. Int. 2022, 156, 111179. DOI: 10.1016/j.foodres.2022.111179.
  • Huntrakul, K.; Yoksan, R.; Sane, A.; Harnkarnsujarit, N. Effects of Pea Protein on Properties of Cassava Starch Edible Films Produced by Blown-Film Extrusion for Oil Packaging. Food Pack. Shelf Life. 2020, 24, 100480. DOI: 10.1016/j.fpsl.2020.100480.
  • Kowalczyk, D.; Gustaw, W.; Zieba, E.; Lisiecki, S.; Stadnik, J.; Baraniak, B. Microstructure and Functional Properties of Sorbitol-Plasticized Pea Protein Isolate Emulsion Films: Effect of Lipid Type and Concentration. Food Hydrocoll. 2016, 60, 353–363. DOI: 10.1016/j.foodhyd.2016.04.006.
  • Khazaei, H.; Subedi, M.; Nickerson, M.; Martínez-Villaluenga, C.; Frias, J.; Vandenberg, A. Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods. 2019, 8(9), 391. DOI: 10.3390/foods8090391.
  • Bamdad, F.; Hossein Goli, A.; Kadivar, M. Preparation and Characterization of Proteinous Film from Lentil (Lens Culinaris): Edible Film from Lentil (Lens Culinaris). Food Res. Int. 2006, 39(1), 106–111. DOI: 10.1016/j.foodres.2005.06.006.
  • Hopkins, E. J.; Stone, A. K.; Wang, J.; Korber, D. R.; Nickerson, M. T. Effect of Glycerol on the Physicochemical Properties of Films Based on Legume Protein Concentrates: A Comparative Study. J. Texture Stud. 2019, 50(6), 539–546. DOI: 10.1111/jtxs.12460.
  • Warsame, A. O.; Michael, N.; O’Sullivan, D. M.; Tosi, P. Identification and Quantification of Major Faba Bean Seed Proteins. J. Agric. Food Chem. 2020, 68(32), 8535–8544. DOI: 10.1021/acs.jafc.0c02927.
  • Montalvo-Paquini, C.; Rangel-Marrón, M.; Palou, E.; López-Malo, A. Physical and Chemical Properties of Edible Films from Faba Bean Protein. Cellulose. 2014, 8, 125–131.
  • Chengxin, C.; Hu, Y.; Wang, Y.; Liao, Y.; Xiong, H.; Selomulya, C.; Hu, J.; Zhao, Q. Complete Waste Recycling Strategies for Improving the Accessibility of Rice Protein Films. Green Chem. 2020, 22(2), 490–503. DOI: 10.1039/C9GC03354H.
  • Wani, I. A.; Singh Sogi, D.; Shanker Shivhare, U.; Singh Gill, B. Physico-Chemical and Functional Properties of Native and Hydrolyzed Kidney Bean (Phaseolus Vulgaris L.) Protein Isolates. Food Res. Int. 2015, 76, 11–18. DOI: 10.1016/j.foodres.2014.08.027.
  • Tang, C.-H.; Xiao, M.-L.; Chen, Z.; Yang, X.-Q.; Yin, S.-W. Properties of Cast Films of Vicilin-Rich Protein Isolates from Phaseolus Legumes: Influence of Heat Curing. LWT - Food Sci. Technol. 2009, 42(10), 1659–1666. DOI: 10.1016/j.lwt.2009.05.020.
  • Shevkani, K.; Singh, N. Relationship Between Protein Characteristics and Film-Forming Properties of Kidney Bean, Field Pea and Amaranth Protein Isolates. International Journal Of Food Science & Technology. 2015, 50(4), 1033–1043. DOI: 10.1111/ijfs.12733.
  • Sharma, I.; Sinhmar, A.; Thory, R.; Singh Sandhu, K.; Kaur, M.; Nain, V.; Kumar Pathera, A.; Chavan, P. Synthesis and Characterization of Nano Starch-Based Composite Films from Kidney Bean (Phaseolus Vulgaris). J. Food Sci. Technol. 2021, 58(6), 2178–2185. DOI: 10.1007/s13197-020-04728-4.
  • Lam, A. C. Y.; Can Karaca, A.; Tyler, R. T.; Nickerson, M. T. Pea Protein Isolates: Structure, Extraction, and Functionality. Food Rev. Int. 2018, 34(2), 126–147. DOI: 10.1080/87559129.2016.1242135.
  • Jiao, G.; Sun, C.-X.; Corke, H.; Gul, K.; Gan, R.-Y.; Fang, Y. The Health Benefits, Functional Properties, Modifications, and Applications of Pea (Pisum Sativum L.) Protein: Current Status, Challenges, and Perspectives. Compr. Rev. Food Sci. Food Saf. 2020, 19(4), 1835–1876. DOI: 10.1111/1541-4337.12573.
  • Guo, Q.; Jiaqi, S.; Yuan, F.; Mao, L.; Gao, Y. Preparation, Characterization and Stability of Pea Protein Isolate and Propylene Glycol Alginate Soluble Complexes. LWT. 2019, 101, 476–482. DOI: 10.1016/J.LWT.2018.11.057.
  • Kowalczyk, D.; Gustaw, W.; Świeca, M.; Baraniak, B. A Study on the Mechanical Properties of Pea Protein Isolate Films. J. Food Process. Preserv. 2014, 38(4), 1726–1736. DOI: 10.1111/jfpp.12135.
  • Jia, X. W.; Yu Qin, Z.; Xin Xu, J.; Hua Kong, B.; Liu, Q.; Wang, H. Preparation and Characterization of Pea Protein Isolate-Pullulan Blend Electrospun Nanofiber Films. Int. J. Biol. Macromol. 2020, 157, 641–647. DOI: 10.1016/j.ijbiomac.2019.11.216.
  • Cheng, J.; Cui, L. Effects of High-Intensity Ultrasound on the Structural, Optical, Mechanical and Physicochemical Properties of Pea Protein Isolate-Based Edible Film. Ultrason. Sonochem. 2021, 80, 105809. DOI: 10.1016/j.ultsonch.2021.105809.
  • Cheng, J.; Zhengze, L.; Wang, J.; Zhu, Z.; Jianhua, Y.; Chen, B.; Cui, L. Structural Characteristics of Pea Protein Isolate (PPI) Modified by High-Pressure Homogenization and Its Relation to the Packaging Properties of PPI Edible Film. Food Chem. 2022, 388, 132974. DOI: 10.1016/j.foodchem.2022.132974.
  • Ayca, A.; Kirtil, E.; Sumnu, G.; Oztop, M. H.; Aydogdu, Y. Utilization of Lentil Flour as a Biopolymer Source for the Development of Edible Films. J. Appl. Polym. Sci. 2018, 135(23), 46356. DOI: 10.1002/app.46356.
  • Jarpa-Parra, M. Lentil Protein: A Review of Functional Properties and Food Application. An Overview of Lentil Protein Functionality. International Journal Of Food Science & Technology. 2018, 53(4), 892–903. DOI: 10.1111/ijfs.13685.
  • Lee, H. W.; Yuyun, L.; Zhang, Y.; Caili, F.; Huang, D. Physicochemical and Functional Properties of Red Lentil Protein Isolates from Three Origins at Different PH. Food Chem. 2021, 358, 129749. DOI: 10.1016/j.foodchem.2021.129749.
  • Joehnke, M. S.; Jeske, S.; Ispiryan, L.; Zannini, E.; Arendt, E. K.; Bez, J.; Christian Sørensen, J.; Lykke Petersen, I. Nutritional and Anti-Nutritional Properties of Lentil (Lens Culinaris) Protein Isolates Prepared by Pilot-Scale Processing. Food Chem.: X. 2021, 9, 100112. DOI: 10.1016/j.fochx.2020.100112.
  • Boyacı, D.; Yemenicioğlu, A. Expanding Horizons of Active Packaging: Design of Consumer-Controlled Release Systems Helps Risk Management of Susceptible Individuals. Food Hydrocoll. 2018, 79, 291–300. DOI: 10.1016/j.foodhyd.2017.12.038.
  • Rahate, K. A.; Madhumita, M.; Prabhakar, P. K. Nutritional Composition, Anti-Nutritional Factors, Pretreatments-Cum-Processing Impact and Food Formulation Potential of Faba Bean (Vicia Faba L.): A Comprehensive Review. LWT. 2021, 138, 110796. DOI: 10.1016/j.lwt.2020.110796.
  • Saremnezhad, S.; Azizi, M. H.; Barzegar, M.; Abbasi, S.; Ahmadi, E. Properties of a New Edible Film Made of Faba Bean Protein Isolate. J. agricultural sci. technol. 2011, 13(2), 181–192.
  • Castaño, J.; Guadarrama-Lezama, A. Y.; Hernández, J.; Colín-Cruz, M.; Muñoz, M.; Castillo, S. Preparation, Characterization and Antifungal Properties of Polysaccharide–Polysaccharide and Polysaccharide–Protein Films. J. Mater. Sci. 2017, 52(1), 353–366. DOI: 10.1007/s10853-016-0336-3.
  • Rojas-Lema, S.; Nilsson, K.; Trifol, J.; Langton, M.; Gomez-Caturla, J.; Balart, R.; Garcia-Garcia, D.; Moriana, R. “Faba Bean Protein Films Reinforced with Cellulose Nanocrystals as Edible Food Packaging material”. Food Hydrocoll. 2021, 107019, 107019. DOI: 10.1016/j.foodhyd.2021.107019.
  • Suhag, R.; Kumar, N.; Trajkovska Petkoska, A.; Upadhyay, A. Film Formation and Deposition Methods of Edible Coating on Food Products: A Review. Food Res. Int. 2020, 136, 109582. DOI: 10.1016/j.foodres.2020.109582.
  • Jeya Jeevahan, J.; Chandrasekaran, M.; Venkatesan, S. P.; Sriram, V.; Britto Joseph, G.; Mageshwaran, G.; Durairaj, R. B. Scaling Up Difficulties and Commercial Aspects of Edible Films for Food Packaging: A Review. Trends Food Sci. Technol. 2020, 100, 210–222. DOI: 10.1016/j.tifs.2020.04.014.
  • Fathi, N.; Almasi, H.; Khalil Pirouzifard, M. Effect of Ultraviolet Radiation on Morphological and Physicochemical Properties of Sesame Protein Isolate Based Edible Films. Food Hydrocoll. 2018, 85, 136–143. DOI: 10.1016/j.foodhyd.2018.07.018.
  • Dey, S.; Hettiarachchy, N.; Bisly, A. A.; Luthra, K.; Atungulu, G. G.; Ubeyitogullari, A.; Angel Mozzoni, L. Physical and Textural Properties of Functional Edible Protein Films from Soybean Using an Innovative 3D Printing Technology. J. Food Sci. 2022, 87(11), 4808–4819. DOI: 10.1111/1750-3841.16349.
  • Amjadi, S.; Almasi, H.; Ghorbani, M.; Ramazani, S. Preparation and Characterization of TiO2nps and Betanin Loaded Zein/Sodium Alginate Nanofibers. Food Pack. Shelf Life. 2020, 24(February), 100504. DOI: 10.1016/j.fpsl.2020.100504.
  • Hoyos-Merlano, N. T.; Borroni, V.; José Rodriguez-Batiller, M.; Jorge Candal, R.; Lidia Herrera, M. Nanoreinforcement as a Strategy to Improve Physical Properties of Biodegradable Composite Films Based on Biopolymers. Food Res. Int. 2022, 162, 112178. DOI: 10.1016/j.foodres.2022.112178.
  • Garavand, F.; Jafarzadeh, S.; Cacciotti, I.; Vahedikia, N.; Sarlak, Z.; Tarhan, Ö.; Yousefi, S.; Rouhi, M.; Castro-Muñoz, R.; Mahdi Jafari, S. Different Strategies to Reinforce the Milk Protein-Based Packaging Composites. Trends Food Sci. Technol. 2022, 123, 1–14. DOI: 10.1016/j.tifs.2022.03.004.
  • Díaz-Montes, E.; Castro-Muñoz, R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods. 2021, 10(2), 249. DOI: 10.3390/foods10020249.
  • Gallegos Tintoré, S.; Chel Guerrero, L.; Corzo Ríos, L. J.; Martínez Ayala, A. L. Péptidos Con Actividad Antioxidante de Proteínas Vegetales. In Bioactividad de péptidos derivados de proteínas alimentarias; OmniaScience: 2013; pp. 111–122. doi:10.3926/oms.94
  • Corzo-Rios, L. J.; Drago, S. R.; Gallegos-Tintoré, S.; Betancur-Ancona, D.; Chel-Guerrero, L. Study of the Interaction of Phaseolus Lunatus Hydrolysed Proteins and Delonix Regia Carboxymethylated Gum Using Capillary Electrophoresis. Chiang Mai J. Sci. 2018, 45(1), 308–317.
  • Corzo-Ríos, L. J.; Garduño-Siciliano, L.; Sánchez-Chino, X. M.; Martínez-Herrera, J.; Cardador-Martínez, A.; Jiménez-Martínez, C. Effect of the Consumption of Amaranth Seeds and Their Sprouts on Alterations of Lipids and Glucose Metabolism in Mice. International Journal Of Food Science & Technology. 2021, 56(7), 3269–3277. DOI: 10.1111/ijfs.15014.
  • Akhtar, A.; Aslam, S.; Khan, S.; Julian McClements, D.; Khalid, N.; Maqsood, S. Utilization of Diverse Protein Sources for the Development of Protein-Based Nanostructures as Bioactive Carrier Systems: A Review of Recent Research Findings (2010–2021). Crit. Rev. Food Sci. Nutr. 2023, 63(16), 2719–2737. DOI: 10.1080/10408398.2021.1980370.
  • Amagliani, Luca, Jonathan O’Regan, Alan L. Kelly, and James A. O’Mahony. 2017. “The Composition, Extraction, Functionality and Applications of Rice Proteins: A Review.” Trends in Food Science & Technology 64:1–12. doi: https://doi.org/10.1016/j.tifs.2017.01.008.