547
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Unmasking the efficacy of Skipjack Tuna (Katsuwonus Pelamis) dark muscle hydrolyzate in lipid regulation: a promising component for functional food

, , , , , & show all
Pages 3014-3029 | Received 02 Aug 2023, Accepted 27 Sep 2023, Published online: 25 Oct 2023

References

  • The Lancet, G.; Hepatology. Obesity: Another Ongoing Pandemic. Lancet. Gastroenter. Hepa. 2021, 6(6), 411. DOI: 10.1016/S2468-1253(21)00143-6.
  • WHO. World Obesity Day 2022 – Accelerating Action To Stop Obesity. https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity. 2022 (Accessed Mar 4, 2022).
  • Zhao, S.; Wu, Y.; Hu, L. Identification and Synthesis of Selective Cholesterol Esterase Inhibitor Using Dynamic Combinatorial Chemistry. Bioorg. Chem. 2022, 119, 105520. DOI: 10.1016/j.bioorg.2021.105520.
  • Singh, H.; Singh, J. V.; Kaur, N.; Sanduja, M.; Singh, G.; Bedi, P. M. S.; Sharma, S. Rational Approaches, Design Strategies, Structure Activity Relationship and Mechanistic Insights for Esterase Inhibitors. Mini. Rev. Med. Chem. 2018, 18(10), 837–894. DOI: 10.2174/1389557517666170807124507.
  • T, B. B.; R, M.; TNK, S.; N, S. A Review on Pancreatic Lipase Inhibitors from Natural Sources: A Potential Target for Obesity. Curr. Enzyme. Inhib. 2021, 17(2), 83–97. DOI: 10.2174/1573408017666210121114441.
  • Bessesen, D. H.; Van Gaal, L. F. Progress and Challenges in Anti-Obesity Pharmacotherapy. Lancet. Diabete. Endocri. 2018, 6(3), 237–248. DOI: 10.1016/S2213-8587(17)30236-X.
  • Goldman, V. E.; Naguib, M. N.; Vidmar, A. P. Anti-Obesity Medication Use in Children and Adolescents with Prader–Willi Syndrome: Case Review and Literature Search. J. Clin. Med. 2021, 10(19), 4540. DOI: 10.3390/jcm10194540.
  • Huang, Y.-P.; Dias, F. F. G.; Leite Nobrega de Moura Bell, J. M.; Barile, D. A Complete Workflow for Discovering Small Bioactive Peptides in Foods by LC-MS/MS: A Case Study on Almonds. Food Chem. 2022, 369, 130834. DOI: 10.1016/j.foodchem.2021.130834.
  • Mudgil, P.; Kamal, H.; Yuen, G. C.; Maqsood, S. Characterization and Identification of Novel Antidiabetic and Anti-Obesity Peptides from Camel Milk Protein Hydrolysates. Food Chem. 2018, 259, 46–54. DOI: 10.1016/j.foodchem.2018.03.082.
  • Mudgil, P.; Baby, B.; Ngoh, Y.-Y.; Vijayan, R.; Gan, C.-Y.; Maqsood, S. Identification and Molecular Docking Study of Novel Cholesterol Esterase Inhibitory Peptides from Camel Milk Proteins. J. Dairy. Sci. 2019, 102(12), 10748–10759. DOI: 10.3168/jds.2019-16520.
  • Baba, W. N.; Mudgil, P.; Baby, B.; Vijayan, R.; Gan, C.-Y.; Maqsood, S. New Insights into the Cholesterol Esterase- and Lipase-Inhibiting Potential of Bioactive Peptides from Camel Whey Hydrolysates: Identification, Characterization, and Molecular Interaction. J. Dairy. Sci. 2021, 104(7), 7393–7405. DOI: 10.3168/jds.2020-19868.
  • Sabika, J.; Hina, K.; Priti, M.; Mohamed, H. H.; Sajid, M. Camel whey protein hydrolysates displayed enhanced cholesteryl esterase and lipase inhibitory, anti-hypertensive and anti-haemolytic properties. LWT. 2018, 98, 212–218. DOI: 10.1016/j.lwt.2018.08.024.
  • Mudgil, P.; Baba, W. N.; Kamal, H.; FitzGerald, R. J.; Hassan, H. M.; Ayoub, M. A.; Gan, C.-Y.; Maqsood, S. A Comparative Investigation into Novel Cholesterol Esterase and Pancreatic Lipase Inhibitory Peptides from Cow and Camel Casein Hydrolysates Generated Upon Enzymatic Hydrolysis and in-Vitro Digestion. Food Chem. 2022, 367, 130661. DOI: 10.1016/j.foodchem.2021.130661.
  • Siow, H.-L.; Choi, S.-B.; Gan, C.-Y. Structure–Activity Studies of Protease Activating, Lipase Inhibiting, Bile Acid Binding and Cholesterol-Lowering Effects of Pre-Screened Cumin Seed Bioactive Peptides. J. Funct. Food. 2016, 27, 600–611. DOI: 10.1016/j.jff.2016.10.013.
  • Prados, I. M.; Marina, M. L.; García, M. C. Isolation and Identification by High Resolution Liquid Chromatography Tandem Mass Spectrometry of Novel Peptides with Multifunctional Lipid-Lowering Capacity. Food Res. Int. 2018, 111, 77–86. DOI: 10.1016/j.foodres.2018.05.009.
  • Mostafa, H.; Al-Ahbabi, N.; Adiamo, O. Q.; Mudgil, P.; Maqsood, S. Phoenix Dactylifera L. Seed Protein Hydrolysates as a Potential Source of Peptides with Antidiabetic and Anti-Hypercholesterolemic Properties: An in vitro Study. Food Biosci. 2022, 49, 101916. DOI: 10.1016/j.fbio.2022.101916.
  • Fisayo Ajayi, F. Identification and Characterization of Cholesterol Esterase and Lipase Inhibitory Peptides from Amaranth Protein Hydrolysates; X: Food Chemistry, 2021. Vol. 12, p. 100165.
  • Garzón, A. G., Cian, R E., Aquino, M E., Drago, S R. Isolation and Identification of Cholesterol Esterase and Pancreatic Lipase Inhibitory Peptides from Brewer’s Spent Grain by Consecutive Chromatography and Mass Spectrometry. Food Funct. 2020, 11(6), 4994–5003. 10.1039/D0FO00880J
  • Ferreiro, N.; Rodrigues, N.; Veloso, A. C. A.; Fernandes, C.; Paiva, H.; Pereira, J. A.; Peres, A. M. Impact of the Covering Vegetable Oil on the Sensory Profile of Canned Tuna of Katsuwonus Pelamis Species and Tuna’s Taste Evaluation Using an Electronic Tongue. Chemosensors. 2022, 10(1), 18. DOI: 10.3390/chemosensors10010018.
  • Ali, M. Y.; Jung, H. J.; Jannat, S.; Jung, H. A.; Choi, J. S. In vitro Antidiabetic and Antioxidant Potential of the Ethanolic Extract of Skipjack Tuna (Katsuwonus Pelamis) Heart. J. Food Biochem. 2016, 40(4), 583–592. DOI: 10.1111/jfbc.12257.
  • Chi, C.-F.; Hu, F.-Y.; Wang, B.; Li, Z.-R.; Luo, H.-Y. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus Pelamis) Dark Muscle. Mar. Drugs. 2015, 13(5), 2580–2601. DOI: 10.3390/md13052580.
  • Qiao, Q.-Q.; Luo, Q.-B.; Suo, S.-K.; Zhao, Y.-Q.; Chi, C.-F.; Wang, B. Preparation, Characterization, and Cytoprotective Effects on HUVECs of Fourteen Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides from Protein Hydrolysate of Tuna Processing By-Products. Front. Nutrit. 2022, 9, 9. DOI: 10.3389/fnut.2022.868681.
  • Mongkonkamthorn, N.; Malila, Y.; Yarnpakdee, S.; Makkhun, S.; Regenstein, J. M.; Wangtueai, S. Production of Protein Hydrolysate Containing Antioxidant and Angiotensin -I-Converting Enzyme (ACE) Inhibitory Activities from Tuna (Katsuwonus Pelamis) Blood. Processes. 2020, 8(11), 1518. DOI: 10.3390/pr8111518.
  • Intarasirisawat, R.; Benjakul, S.; Wu, J.; Visessanguan, W. Isolation of Antioxidative and ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack (Katsuwana Pelamis) Roe. J. Funct. Food. 2013, 5(4), 1854–1862. DOI: 10.1016/j.jff.2013.09.006.
  • Zhang, L.; Zhao, G.-X.; Zhao, Y.-Q.; Qiu, Y.-T.; Chi, C.-F.; Wang, B. Identification and Active Evaluation of Antioxidant Peptides from Protein Hydrolysates of Skipjack Tuna (Katsuwonus Pelamis) Head. Antioxidants. 2019, 8(8), 318. DOI: 10.3390/antiox8080318.
  • Wang, Y.-M.; Li, X.-Y.; Wang, J.; He, Y.; Chi, C.-F.; Wang, B. Antioxidant Peptides from Protein Hydrolysate of Skipjack Tuna Milt: Purification, Identification, and Cytoprotection on H2O2 Damaged Human Umbilical Vein Endothelial Cells. Process Biochem. 2022, 113, 258–269. DOI: 10.1016/j.procbio.2022.01.008.
  • Ding, D.; Du, B.; Zhang, C.; Zaman, F.; Huang, Y. Isolation and Identification of an Antioxidant Collagen Peptide from Skipjack Tuna (Katsuwonus Pelamis) Bone. Rsc. Adv. 2019, 9(46), 27032–27041. DOI: 10.1039/C9RA04665H.
  • Zhou, C.; Hu, J.; Ma, H.; Yagoub, A. E. A.; Yu, X.; Owusu, J.; Ma, H.; Qin, X. Antioxidant Peptides from Corn Gluten Meal: Orthogonal Design Evaluation. Food Chem. 2015, 187, 270–278. DOI: 10.1016/j.foodchem.2015.04.092.
  • Zhang, Z.; Jiang, S.; Zeng, Y.; He, K.; Luo, Y.; Yu, F. Antioxidant Peptides from Mytilus Coruscus on H2O2-Induced Human Umbilical Vein Endothelial Cell Stress. Food Biosci. 2020, 38, 100762. DOI: 10.1016/j.fbio.2020.100762.
  • Zhang, Z.; Hu, X.; Lin, L.; Ding, G.; Yu, F. Immunomodulatory Activity of Low Molecular-Weight Peptides from Nibea Japonica in RAW264.7 Cells via NF-Κb Pathway. Mar. Drugs. 2019, 17(7), 404. DOI: 10.3390/md17070404.
  • Jiang, S.; Zhang, Z.; Yu, F.; Zhang, Z.; Yang, Z.; Tang, Y.; Ding, G. Ameliorative Effect of Low Molecular Weight Peptides from the Head of Red Shrimp (Solenocera Crassicornis) Against Cyclophosphamide-Induced Hepatotoxicity in Mice. J. Funct. Foods. 2020, 72, 104085. DOI: 10.1016/j.jff.2020.104085.
  • Du, X.; Bai, M.; Huang, Y.; Jiang, Z.; Chen, F.; Ni, H.; Li, Q. Inhibitory Effect of Astaxanthin on Pancreatic Lipase with Inhibition Kinetics Integrating Molecular Docking Simulation. J. Funct. Foods. 2018, 48, 551–557. DOI: 10.1016/j.jff.2018.07.045.
  • Karami, Z.; Butkinaree, C.; Yingchutrakul, Y.; Simanon, N.; Duangmal, K. Comparative Study on Structural, Biological and Functional Activities of Hydrolysates from Adzuki Bean (Vigna Angularis) and Mung Bean (Vigna Radiata) Protein Concentrates Using Alcalase and Flavourzyme. Food Res. Int. 2022, 161, 111797. DOI: 10.1016/j.foodres.2022.111797.
  • Chen, H.; Qi, X.; Guan, K.; Gu, Y.; Wang, R.; Li, Q.; Ma, Y. Peptides Released from Bovine α-Lactalbumin by Simulated Digestion Alleviated Free Fatty Acids-Induced Lipid Accumulation in HepG2 Cells. J. Funct. Foods. 2021, 85, 104618. DOI: 10.1016/j.jff.2021.104618.
  • López-Pedrouso, M.; Borrajo, P.; Pateiro, M.; Lorenzo, J. M.; Franco, D. Antioxidant Activity and Peptidomic Analysis of Porcine Liver Hydrolysates Using Alcalase, Bromelain, Flavourzyme and Papain Enzymes. Food Res. Int. 2020, 137, 109389. DOI: 10.1016/j.foodres.2020.109389.
  • Wang, Z.; Liu, X.; Xie, H.; Liu, Z.; Rakariyatham, K.; Yu, C.; Shahidi, F.; Zhou, D. Antioxidant Activity and Functional Properties of Alcalase-Hydrolyzed Scallop Protein Hydrolysate and Its Role in the Inhibition of Cytotoxicity in vitro. Food Chem. 2021, 344, 128566. DOI: 10.1016/j.foodchem.2020.128566.
  • Du, Z.; Li, Y. Review and Perspective on Bioactive Peptides: A Roadmap for Research, Development, and Future Opportunities. J. Agric. Food Res. 2022, 9, 100353. DOI: 10.1016/j.jafr.2022.100353.