531
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Probabilistic modeling of the growth of Listeria monocytogenes: effect of nisin, temperature, and strain in the presence of potassium chloride or potassium sorbate

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3129-3137 | Received 03 Jul 2023, Accepted 03 Oct 2023, Published online: 26 Oct 2023

References

  • Metselaar, K. I.; den Besten, H. M. W.; Abee, T.; Moezelaar, R.; Zwietering, M. H. Isolation and Quantification of Highly Acid Resistant Variants of Listeria Monocytogenes. International Journal Of Food Microbiology. 2013, 166(3), 508–514. DOI: 10.1016/j.ijfoodmicro.2013.08.011.
  • Miller, F. A.; Gil, M. M.; Brandão, T. R. S.; Teixeira, P.; Silva, C. L. M. Sigmoidal Thermal Inactivation Kinetics of Listeria Innocua in Broth: Influence of Strain and Growth Phase. Influence Of Strain And Growth Phase Food Control. 2009, 20(12), 1151–1157. DOI: 10.1016/j.foodcont.2009.03.007.
  • Gwak, E.; Oh, M.-H.; Park, B.-Y.; Lee, H.; Lee, S.; Ha, J.; Lee, J.; Kim, S.; Choi, K.-H.; Yoon, Y. Probabilistic Models to Predict Listeria Monocytogenes Growth at Low Concentrations of NaNO2 and NaCl in Frankfurters. Korean J. Food Sci. Animal Resour. 2015, 35(6), 815–823. DOI: 10.5851/kosfa.2015.35.6.815.
  • Bolton, L. F.; Frank, J. F. Defining the Growth/no-Growth Interface for Listeria Monocytogenes in Mexican-Style Cheese Based on Salt, pH, and Moisture Content. J. Food Prot. 1999, 62(6), 601–609. DOI: 10.4315/0362-028X-62.6.601.
  • Valero, A.; Carrasco, E.; Perez-Rodriguez, F.; Garcia-Gimeno, R. M.; Zurera, G. Growth/No Growth Model of Listeria Monocytogenes as a Function of Temperature, pH, Citric Acid and Ascorbic Acid. Eur. Food Res. Tech. 2006, 224(1), 91–100. DOI: 10.1007/s00217-006-0293-1.
  • Mejlholm, O.; Dalgaard, P. Development and Validation of an Extensive Growth and Growth Boundary Model for Listeria Monocytogenes in Lightly Preserved and Ready-To-Eat Shrimp. J. Food Prot. 2009, 72(10), 2132–2143. DOI: 10.4315/0362-028X-72.10.2132.
  • Haberbeck, L. U.; Oliveira, R. C.; Vivijs, B.; Wenseleers, T.; Aertsen, A.; Michiels, C.; Geeraerd, A. H. Variability in Growth/No Growth Boundaries of 188 Different Escherichia coli Strains Reveals That Approximately 75 % Have a Higher Growth Probability Under Low pH conditions Than E. Coli O157: H7 Strain ATCC 43888. Food Microbiol. 2015, 45, 222–230. DOI: 10.1016/j.fm.2014.06.024.
  • Lanciotti, R.; Sinigaglia, M.; Gardini, F.; Vannini, L.; Guerzoni, M. E. Growth/No Growth Interfaces of Bacillus cereus, Staphylococcus Aureus and Salmonella Enteritidis in Model Systems Based on Water Activity, pH, Temperature and Ethanol Concentration. Food Microbiol. 2001, 18(6), 659–668. DOI: 10.1006/fmic.2001.0429.
  • Boziaris, I. S.; Skandamis, P. N.; Anastasiadi, M.; Nychas, G.-J. E. Effect of NaCl and KCl on Fate and Growth/No Growth Interfaces of Listeria Monocytogenes Scott a at Different pH and Nisin Concentrations. J. Appl. Microbiol. 2007, 102(3), 796–805. DOI: 10.1111/j.1365-2672.2006.03117.x.
  • Gonzalez-Fandos, E.; Martínez-Laorden, A.; Perez-Arnedo, I. Efficacy of Combinations of Lactic Acid and Potassium Sorbate Against Listeria Monocytogenes in Chicken Stored Under Modified Atmospheres. Food Microbiol. 2021, 93, 103596. DOI: 10.1016/j.fm.2020.103596.
  • Yamaki, S.; Shirahama, S.; Kobayashi, T.; Kawai, Y.; Yamazaki, K. Combined Effect of Nisin and Commercial Pectin-Hydrolysate Treatment on Survival and Growth of Listeria Monocytogenes in Soy-Seasoned Salmon Roe Products. Food Sci. Technol. Res. 2015, 21(5), 751–755. DOI: 10.3136/fstr.21.751.
  • Boziaris, I. S.; Nychas, G.-J. E. Effect of Nisin on Growth Boundaries of Listeria Monocytogenes Scott A, at Various Temperatures, pH and Water Activities. Food Microbiol. 2006, 23(8), 779–784. DOI: 10.1016/j.fm.2006.03.003.
  • Ruiz, A.; Williams, S. K.; Djeri, N.; Hinton, A., Jr.; Rodrick, G. E. Nisin Affects the Growth of Listeria Monocytogenes on Ready-To-Eat Turkey Ham Stored at Four Degrees Celsius for Sixty-Three Days. Poultr. Sci. 2010, 89(2), 353–358. DOI: 10.3382/ps.2008-00503.
  • Şentürk, E.; Buzrul, S.; Şanlıbaba, P. Prevalence of Listeria Monocytogenes in Ready-To-Eat Foods, and Growth Boundary Modeling of the Selected Strains in Broth as a Function of Temperature, Salt and Nisin. Int. J. Food Prop. 2022, 25(1), 1, 2237–2253. DOI: 10.1080/10942912.2022.2130942.
  • Khanipour, E.; Flint, S. H.; McCarthy, O. J.; Golding, M.; Palmer, J.; Ratkowsky, D. A.; Ross, T.; Tramplin, M. Modelling the Combined Effects of Salt, Sorbic Acid and Nisin on the Probability of Growth of Clostridium Sporogenes in a Controlled Environment (Nutrient Broth). Food Control. 2016, 62, 32–43. DOI: 10.1016/j.foodcont.2015.10.012.
  • Buzrul, S. High Hydrostatic Pressure Inactivation of Microorganisms: A Probabilistic Model for Target Log-Reductions. Int. J. Food Microbiol. 2019, 309, 108330. DOI: 10.1016/j.ijfoodmicro.2019.108330.
  • Koutsoumanis, K. P.; Sofos, J. N. Effect of Inoculum Size on the Combined Temperature, pH and Aw Limits for Growth of Listeria Monocytogenes. International Journal Of Food Microbiology. 2005, 104(1), 83–91. DOI: 10.1016/j.ijfoodmicro.2005.01.010.
  • Khanipour, E.; Flint, S. H.; McCarthy, O. J.; Palmer, J.; Golding, M.; Ratkowsky, D. A.; Ross, T.; Tramplin, M. Modelling the Combined Effect of Salt, Sorbic Acid and Nisin on the Probability of Growth of Clostridium Sporogenes in High Moisture Processed Cheese Analogue. Int. Dairy J. 2016, 57, 62–71. DOI: 10.1016/j.idairyj.2016.02.039.
  • Leylak, C.; Buzrul, S. The Combined Effect of Temperature, pH and Lactose Concentration on the Growth Probability of Listeria Innocua. Journal of Microbiology, Biotechnology and Food Sciences. 2020, 10(3), 474–477. DOI: https://doi.org/10.15414/jmbfs.2020.10.3.474-477.