676
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation, structural characterization and functional properties of a novel selenium chelating peptide derived from the hydrolyzate of wheat protein

, , , , , , & show all
Pages 3241-3260 | Received 26 Jun 2023, Accepted 01 Sep 2023, Published online: 21 Nov 2023

References

  • Avery, J.; Hoffmann, P. R. Selenium, Selenoproteins, and Immunity. Nutrients. 2018, 10(9), 1203. DOI: 10.3390/nu10091203.
  • Kieliszek, M.; Błażejak, S. Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review. Molecules. 2016, 21(5), 609. DOI: 10.3390/molecules21050609.
  • Shu, Y.; Wu, M.; Yang, S.; Wang, Y.; Li, H. Association of Dietary Selenium Intake with Telomere Length in Middle-Aged and Older Adults. Clin. Nutr. 2020, 39(10), 3086–3091. DOI: 10.1016/j.clnu.2020.01.014.
  • Zhang, L.; Gao, Y.; Feng, H.; Zou, N.; Wang, K.; Sun, D. Effects of Selenium Deficiency and Low Protein Intake on the Apoptosis Through a Mitochondria-Dependent Pathway. J. Trace Elem. Med. Biol. 2019, 56, 21–30. DOI: 10.1016/j.jtemb.2019.06.019.
  • Ying, H.; Zhang, Y. Systems Biology of Selenium and Complex Disease. Biol. Trace Elem. Res. 2019, 192(1), 38–50. DOI: 10.1007/s12011-019-01781-9.
  • Hu, J.; Zhao, Q.; Cheng, X.; Selomulya, C.; Bai, C.; Zhu, X.; Li, X.; Xiong, H. Antioxidant Activities of Se-SPI Produced from Soybean as Accumulation and Biotransformation Reactor of Natural Selenium. Food Chem. 2014, 146, 531–537. DOI: 10.1016/j.foodchem.2013.09.087.
  • Trippe, R. C.; Pilon-Smits, E. A. H. Selenium Transport and Metabolism in Plants: Phytoremediation and Biofortification Implications. J. Hazard. Mater. 2021, 404, 124178. DOI: 10.1016/j.jhazmat.2020.124178.
  • Rayman, M. P. The Use of High-Selenium Yeast to Raise Selenium Status: How Does It Measure Up? Br. J. Nutr. 2004, 92(4), 557–573. DOI: 10.1079/BJN20041251.
  • Musik, I.; Kozioł-Montewka, M.; Toś-Luty, S.; Donica, H.; Pasternak, K.; Wawrzycki, S. Comparison of Selenium Distribution in Mice Organs After the Supplementation with Inorganic and Organic Selenium Compound Selenosemicarbazide. Ann. Univ. Mariae Curie Sklodowska Med. 2002, 57(1), 15–22.
  • Zhang, X.; He, H.; Xiang, J.; Yin, H.; Hou, T. Selenium-Containing Proteins/Peptides from Plants: A Review on the Structures and Functions. J. Agric. Food. Chem. 2020, 68(51), 15061–15073. DOI: 10.1021/acs.jafc.0c05594.
  • Liu, K.; Du, R.; Chen, F. Stability of the Antioxidant Peptide SeMet-Pro-Ser Identified from Selenized Brown Rice Protein Hydrolysates. Food Chem. 2020, 319, 126540. DOI: 10.1016/j.foodchem.2020.126540.
  • Zhang, X.; He, H.; Xiang, J.; Li, B.; Zhao, M.; Hou, T. Selenium-Containing Soybean Antioxidant Peptides: Preparation and Comprehensive Comparison of Different Selenium Supplements. Food Chem. 2021, 358, 129888. DOI: 10.1016/j.foodchem.2021.129888.
  • Chen, X.; Li, S.; Cong, X.; Yu, T.; Zhu, Z.; Barba, F. J.; Marszalek, K.; Puchalski, C.; Cheng, S. Optimization of Bacillus Cereus Fermentation Process for Selenium Enrichment as Organic Selenium Source. Front Nutr. 2020, 7, 543873. DOI: 10.3389/fnut.2020.543873.
  • Fang, Y.; Pan, X.; Zhao, E.; Shi, Y.; Shen, X.; Wu, J.; Pei, F.; Hu, Q.; Qiu, W. Isolation and Identification of Immunomodulatory Selenium-Containing Peptides from Selenium-Enriched Rice Protein Hydrolysates. Food Chem. 2019, 275, 696–702. DOI: 10.1016/j.foodchem.2018.09.115.
  • Sila, A.; Bougatef, A. Antioxidant Peptides from Marine By-Products: Isolation, Identification and Application in Food Systems. A Review. J. Funct. Foods. 2016, 21, 10–26. DOI: 10.1016/j.jff.2015.11.007.
  • Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients. 2018, 10(11), 1738. DOI: 10.3390/nu10111738.
  • Wen, C.; Zhang, J.; Zhang, H.; Duan, Y.; Ma, H. Plant Protein-Derived Antioxidant Peptides: Isolation, Identification, Mechanism of Action and Application in Food Systems: A Review. Trends Food Sci. Technol. 2020, 105, 308–322. DOI: 10.1016/j.tifs.2020.09.019.
  • Sheng, Y.; Wang, W. Y.; Wu, M. F.; Wang, Y. M.; Zhu, W. Y.; Chi, C. F.; Wang, B. Eighteen Novel Bioactive Peptides from Monkfish (Lophius Litulon) Swim Bladders: Production, Identification, Antioxidant Activity, and Stability. Mar. Drugs. 2023, 21(3), 169. DOI: 10.3390/md21030169.
  • Kong, J.; Hu, X. M.; Cai, W. W.; Wang, Y. M.; Chi, C. F.; Wang, B. Bioactive Peptides from Skipjack Tuna Cardiac Arterial Bulbs (II): Protective Function on UVB-Irradiated HaCat Cells Through Antioxidant and Anti-Apoptotic Mechanisms. Mar. Drugs. 2023, 21(2), 105. DOI: 10.3390/md21020105.
  • Sánchez, A.; Vázquez, A. Bioactive Peptides: A Review. Food Quality and Safety. Food Qual. Saf. 2017, 1(1), 29–46. DOI: 10.1093/fqs/fyx006.
  • Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-Derived Bioactive Peptides on Inflammation and Oxidative Stress. Biomed Res. Int. 2014, 2014, 1–11. DOI: 10.1155/2014/608979.
  • Rutherfurd-Markwick, K. J. Food Proteins as a Source of Bioactive Peptides with Diverse Functions. Br. J. Nutr. 2012, 108(S2), S149–S157. DOI: 10.1017/S000711451200253X.
  • Zheng, S. L.; Wang, Y. Z.; Zhao, Y. Q.; Chi, C. F.; Zhu, W. Y.; Wang, B. High Fischer Ratio Oligopeptides from Hard-Shelled Mussel: Preparation and Hepatoprotective Effect Against Acetaminophen-Induced Liver Injury in Mice. Food Biosci. 2023, 53, 102638. DOI: 10.1016/j.fbio.2023.102638.
  • Ye, Q.; Wu, X.; Zhang, X.; Wang, S. Organic Selenium Derived from Chelation of Soybean Peptide-Selenium and Its Functional Properties in vitro and in vivo. Food Funct. 2019, 10(8), 4761–4770. DOI: 10.1039/C9FO00729F.
  • Doan, N.; Liu, Y.; Xiong, X.; Kim, K.; Wu, Z.; Bravo, D. M.; Blanchard, A.; Ji, P. Organic Selenium Supplement Partially Alleviated Diquat-Induced Oxidative Insults and Hepatic Metabolic Stress in Nursery Pigs. Br. J. Nutr. 2020, 124(1), 23–33. DOI: 10.1017/S0007114520000689.
  • Lu, X.; Ma, R.; Zhan, J.; Liu, C.; Tian, Y. Starch Digestion Retarded by Wheat Protein Hydrolysates with Different Degrees of Hydrolysis. Food Chem. 2023, 408, 135153. DOI: 10.1016/j.foodchem.2022.135153.
  • Ahmedna, M.; Prinyawiwatkul, W.; Rao, R. M. Solubilized Wheat Protein Isolate: Functional Properties and Potential Food Applications. J. Agric. Food. Chem. 1999, 47(4), 1340–1345. DOI: 10.1021/jf981098s.
  • Zhang, R.; Zhang, J.; Liu, Y.; Fang, L.; Wei, Y.; Gu, R.; Lin, M.; Chen, L.; Zhou, Z. The Effect of Fermented Wheat Protein Hydrolysate on the Exercise Performance in Mice. J. Funct. Foods. 2022, 97, 105217. DOI: 10.1016/j.jff.2022.105217.
  • Yang, X.; Li, Y.; Li, S.; Oladejo, A. O.; Wang, Y.; Huang, S.; Zhou, C.; Wang, Y.; Mao, L.; Zhang, Y., et al. Effects of Multi-Frequency Ultrasound Pretreatment Under Low Power Density on the Enzymolysis and the Structure Characterization of Defatted Wheat Germ Protein. Ultrason. Sonochem. 2017, 38, 410–420. DOI: 10.1016/j.ultsonch.2017.03.001.
  • Saidi, S.; Deratani, A.; Belleville, M.-P.; Amar, R. B. Production and Fractionation of Tuna By-Product Protein Hydrolysate by Ultrafiltration and Nanofiltration: Impact on Interesting Peptides Fractions and Nutritional Properties. Food Res. Int. 2014, 65, 453–461. DOI: 10.1016/j.foodres.2014.04.026.
  • National Health and Family Planning Commission of PRC, China Food and Drug Administration. National Standards for Food Safety the Determination of Selenium in Food: GB 5009.93-2017; Standards Press of China: Beijing, 2017.
  • Sapan, C. V.; Lundblad, R. L.; Price, N. C. Colorimetric Protein Assay Techniques. Biotechnol. Appl. Biochem. 1999, 29(2), 99–108. DOI: 10.1111/j.1470-8744.1999.tb00538.x.
  • Chen, X.; Chen, Y.; Zou, L.; Zhang, X.; Dong, Y.; Tang, J.; McClements, D. J.; Liu, W. Plant-Based Nanoparticles Prepared from Proteins and Phospholipids Consisting of a Core–Multilayer-shell Structure: Fabrication, Stability, and Foamability. J. Agric. Food. Chem. 2019, 67(23), 6574–6584. DOI: 10.1021/acs.jafc.9b02028.
  • Zhan, F.; Li, J.; Wang, Y.; Shi, M.; Li, B.; Sheng, F. B. Foam, and Interfacial Properties of Tannic Acid/Sodium Caseinate Nanocomplexes. J. Agric. Food. Chem. 2018, 66(26), 6832–6839. DOI: 10.1021/acs.jafc.8b00503.
  • Tirgar, M.; Silcock, P.; Carne, A.; Birch, E. J. Effect of Extraction Method on Functional Properties of Flaxseed Protein Concentrates. Food Chem. 2017, 215, 417–424. DOI: 10.1016/j.foodchem.2016.08.002.
  • Malomo, S. A.; He, R.; Aluko, R. E. Structural and Functional Properties of Hemp Seed Protein Products: Structure-Function of Hemp Seed Proteins. J. Food Sci. 2014, 79(8), C1512–C1521. DOI: 10.1111/1750-3841.12537.
  • Mcclements, D. J. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47(7), 611–649. DOI: 10.1080/10408390701289292.
  • Huang, Y.; Hua, Y.; Qiu, A. Soybean Protein Aggregation Induced by Lipoxygenase Catalyzed Linoleic Acid Oxidation. Food Res. Int. 2006, 39(2), 240–249. DOI: 10.1016/j.foodres.2005.07.012.
  • Zhu, Z.; Mao, X.; Wu, Q.; Zhang, J.; Deng, X. Effects of Oxidative Modification of Peroxyl Radicals on the Structure and Foamability of Chickpea Protein Isolates. J. Food Sci. 2021, 86(3), 824–833. DOI: 10.1111/1750-3841.15643.
  • Beveridge, T. T. S. J.; Toma, S. J.; Nakai, S. Determination of SH‐And SS‐Groups in Some Food Proteins Using Ellman’s Reagent. J. Food Sci. 1974, 39(1), 49–51. DOI: 10.1111/j.1365-2621.1974.tb00984.x.
  • Ellman, G. L. Tissue Sulfhydryl Groups. Archives of Biochemistry and Biophysics. Archiv. Biochem. Biophys. 1959, 82(1), 70–77. DOI: 10.1016/0003-9861(59)90090-6.
  • Lu, K.; Zhao, Z.; Ho, S.-H.; Ma, R.; Xie, X.; Chen, C. Biorefining and the Functional Properties of Proteins from Lipid and Pigment Extract Residue of Chlorella Pyrenoidosa. Mar. Drugs. 2019, 17(8), 454. DOI: 10.3390/md17080454.
  • Coelho, T. L. S.; Braga, F. M. S.; Silva, N. M. C.; Dantas, C.; Lopes Júnior, C. A.; de Sousa, S. A. A.; Vieira, E. C. Optimization of the Protein Extraction Method of Goat Meat Using Factorial Design and Response Surface Methodology. Food Chem. 2019, 281, 63–70. DOI: 10.1016/j.foodchem.2018.12.055.
  • Huang, W.; Lan, Y.; Liao, W.; Lin, L.; Liu, G.; Xu, H.; Xue, J.; Guo, B.; Cao, Y.; Miao, J. P. Preparation, Characterization and Biological Activities of Egg White Peptides-Calcium Chelate. LWT. 2021, 149, 112035. DOI: 10.1016/j.lwt.2021.112035.
  • Zhao, L.; CHen, Z. H.; CHen, H.; HUA, P.; LIU, B. Optimization of Celation of Juncao Ganoderma Lucidum Peptides with Selenium by Response Surface Methodology. Food Sci. 2017, 38(14), 187–192.
  • Lin, J.; Cai, X.; Tang, M.; Wang, S. Preparation and Evaluation of the Chelating Nanocomposite Fabricated with Marine Algae Schizochytrium Sp. Protein Hydrolysate and Calcium. J. Agric. Food. Chem. 2015, 63(44), 9704–9714. DOI: 10.1021/acs.jafc.5b04001.
  • Wang, X.; Li, M.; Li, M.; Mao, X.; Zhou, J.; Ren, F. Preparation and Characteristics of Yak Casein Hydrolysate–Iron Complex. International Journal Of Food Science & Technology. 2011, 46(8), 1705–1710. DOI: 10.1111/j.1365-2621.2011.02672.x.
  • Ke, H.; Ma, R.; Liu, X.; Xie, Y.; Chen, J. Highly Effective Peptide-Calcium Chelate Prepared from Aquatic Products Processing Wastes: Stickwater and Oyster Shells. LWT. 2022, 168, 113947. DOI: 10.1016/j.lwt.2022.113947.
  • Ünsal, M.; Işık-Gülsaç, I.; Üresin, E.; Budak, M. S.; Özgür-Büyüksakallı, K.; Sayar, A.; Aksoy, P.; Ünlü, N.; Okur, O.; Şahin, H., et al. Optimisation of Biomass Catalytic Depolymerisation Conditions by Using Response Surface Methodology. Waste Manag. Res. 2020, 38(3), 322–331. DOI: 10.1177/0734242X19890647.
  • Blat, D.; Weiner, L.; Youdim, M. B. H.; Fridkin, M. A Novel Iron-Chelating Derivative of the Neuroprotective Peptide NAPVSIPQ Shows Superior Antioxidant and Antineurodegenerative Capabilities. J. Med. Chem. 2008, 51(1), 126–134. DOI: 10.1021/jm070800l.
  • Yan, M.; Li, B.; Zhao, X.; Ren, G.; Zhuang, Y.; Hou, H.; Zhang, X.; Chen, L.; Fan, Y. Characterization of Acid-Soluble Collagen from the Skin of Walleye Pollock (Theragra Chalcogramma). Food Chem. 2008, 107(4), 1581–1586. DOI: 10.1016/j.foodchem.2007.10.027.
  • Zhu, C.; Sun, Y.; Wang, Y.; Luo, Y.; Fan, D. The Preparation and Characterization of Novel Human-Like Collagen Metal Chelates. Mater. Sci. Eng. C. 2013, 33(5), 2611–2619. DOI: 10.1016/j.msec.2013.02.028.
  • Vavrusova, M.; Skibsted, L. H. Calcium Nutrition. Bioavailability and Fortification. LWT - Food Sci. Technol. 2014, 59(2), 1198–1204. DOI: 10.1016/j.lwt.2014.04.034.
  • Sun, N.; Wu, H.; Du, M.; Tang, Y.; Liu, H.; Fu, Y.; Zhu, B. Food Protein-Derived Calcium Chelating Peptides: A Review. Trends Food Sci. Technol. 2016, 58, 140–148. DOI: 10.1016/j.tifs.2016.10.004.
  • Yu, Y.; Fan, D. Characterization of the Complex of Human-Like Collagen with Calcium. Biol. Trace Elem. Res. 2012, 145(1), 33–38. DOI: 10.1007/s12011-011-9167-x.
  • Wang, X.; Gao, A.; Chen, Y.; Zhang, X.; Li, S.; Chen, Y. Preparation of Cucumber Seed Peptide-Calcium Chelate by Liquid State Fermentation and Its Characterization. Food Chem. 2017, 229, 487–494. DOI: 10.1016/j.foodchem.2017.02.121.
  • Zhu, K.-X.; Wang, X.-P.; Guo, X.-N. Isolation and Characterization of Zinc-Chelating Peptides from Wheat Germ Protein Hydrolysates. J. Funct. Foods. 2015, 12, 23–32. DOI: 10.1016/j.jff.2014.10.030.
  • Liu, F.-R.; Wang, L.; Wang, R.; Chen, Z.-X. Calcium-Binding Capacity of Wheat Germ Protein Hydrolysate and Characterization of Peptide–Calcium Complex. J. Agric. Food. Chem. 2013, 61(31), 7537–7544. DOI: 10.1021/jf401868z.
  • Wang, L.; Ding, Y.; Zhang, X.; Li, Y.; Wang, R.; Luo, X.; Li, Y.; Li, J.; Chen, Z. Isolation of a Novel Calcium-Binding Peptide from Wheat Germ Protein Hydrolysates and the Prediction for Its Mechanism of Combination. Food Chem. 2018, 239, 416–426. DOI: 10.1016/j.foodchem.2017.06.090.
  • Malison, A.; Arpanutud, P.; Keeratipibul, S. Chicken Foot Broth Byproduct: A New Source for Highly Effective Peptide-Calcium Chelate. Food Chem. 2021, 345, 128713. DOI: 10.1016/j.foodchem.2020.128713.
  • Ren, Z.; Huang, G.; Jiang, J.; Chen, W. Preparation and Characteristic of Iron-Binding Peptides from Shrimp Processing Discards Hydrolysates. 2011.
  • Silverstein, R. M.; Bassler, G. C. Spectrometric Identification of Organic Compounds. ACS Publications. 10.1021/ed039p546.
  • Zhang, Y.; Ding, X.; Li, M. P. Preparation, Characterization and in vitro Stability of Iron-Chelating Peptides from Mung Beans. Food Chem. 2021, 349, 129101. DOI: 10.1016/j.foodchem.2021.129101.
  • Zhao, L.; Huang, S.; Cai, X.; Hong, J.; Wang, S. A Specific Peptide with Calcium Chelating Capacity Isolated from Whey Protein Hydrolysate. J. Funct. Foods. 2014, 10, 46–53. DOI: 10.1016/j.jff.2014.05.013.
  • Zhang, Z.; Zhou, F.; Liu, X.; Zhao, M. Particulate Nanocomposite from Oyster (Crassostrea Rivularis) Hydrolysates via Zinc Chelation Improves Zinc Solubility and Peptide Activity. Food Chem. 2018, 258, 269–277. DOI: 10.1016/j.foodchem.2018.03.030.
  • Zhao, L.; Cai, X.; Huang, S.; Wang, S.; Huang, Y.; Hong, J.; Rao, P. Isolation and Identification of a Whey Protein-Sourced Calcium-Binding Tripeptide Tyr-Asp-Thr. Int. Dairy J. 2015, 40, 16–23. DOI: 10.1016/j.idairyj.2014.08.013.
  • Zhao, L.; Huang, Q.; Huang, S.; Lin, J.; Wang, S.; Huang, Y.; Hong, J.; Rao, P. Novel Peptide with a Specific Calcium-Binding Capacity from Whey Protein Hydrolysate and the Possible Chelating Mode. J. Agric. Food. Chem. 2014, 62(42), 10274–10282. DOI: 10.1021/jf502412f.
  • Zhang, L.; Lin, Y.; Wang, S. Purification of Algal Calcium-Chelating Peptide and Its Physical Chemical Properties. J. Aquat. Food Prod. Technol. 2018, 27(4), 518–530. DOI: 10.1080/10498850.2018.1449153.
  • Wang, X.; Zhang, Z.; Xu, H.; Li, X.; Hao, X. Preparation of Sheep Bone Collagen Peptide–Calcium Chelate Using Enzymolysis-Fermentation Methodology and Its Structural Characterization and Stability Analysis. Rsc. Adv. 2020, 10(20), 11624–11633. DOI: 10.1039/D0RA00425A.
  • Fathima, N. N.; Bose, M. C.; Rao, J. R.; Nair, B. U. Stabilization of Type I Collagen Against Collagenases (Type I) and Thermal Degradation Using Iron Complex. J. Inorg. Biochem. 2006, 100(11), 1774–1780. DOI: 10.1016/j.jinorgbio.2006.06.014.
  • Qu, W.; Feng, Y.; Xiong, T.; Li, Y.; Wahia, H.; Ma, H. Preparation of Corn ACE Inhibitory Peptide-Ferrous Chelate by Dual-Frequency Ultrasound and Its Structure and Stability Analyses. Ultrason. Sonochem. 2022, 83, 105937. DOI: 10.1016/j.ultsonch.2022.105937.
  • Chen, M.; Ji, H.; Zhang, Z.; Zeng, X.; Su, W.; Liu, S. A Novel Calcium-Chelating Peptide Purified from Auxis Thazard Protien Hydrolysate and Its Binding Properties with Calcium. J. Funct. Foods. 2019, 60, 103447. DOI: 10.1016/j.jff.2019.103447.
  • Mokni Ghribi, A.; Maklouf Gafsi, I.; Sila, A.; Blecker, C.; Danthine, S.; Attia, H.; Bougatef, A.; Besbes, S. Effects of Enzymatic Hydrolysis on Conformational and Functional Properties of Chickpea Protein Isolate. Food Chem. 2015, 187, 322–330. DOI: 10.1016/j.foodchem.2015.04.109.
  • Liu, Y.; Li, X.; Chen, Z.; Yu, J.; Wang, F.; Wang, J. Characterization of Structural and Functional Properties of Fish Protein Hydrolysates from Surimi Processing By-Products. Food Chem. 2014, 151, 459–465. DOI: 10.1016/j.foodchem.2013.11.089.
  • Gharbi, N.; Labbafi, M. Influence of Treatment-Induced Modification of Egg White Proteins on Foaming Properties. Food Hydrocoll. 2019, 90, 72–81. DOI: 10.1016/j.foodhyd.2018.11.060.
  • Omana, D. A.; Xu, Y.; Moayedi, V.; Betti, M. Alkali-Aided Protein Extraction from Chicken Dark Meat: Chemical and Functional Properties of Recovered Proteins. Process Biochem. 2010, 45(3), 375–381. DOI: 10.1016/j.procbio.2009.10.010.
  • Noman, A.; Qixing, J.; Xu, Y.; Ali, A. H.; Al-Bukhaiti, W. Q.; Abed, S. M.; Xia, W. Influence of Degree of Hydrolysis on Chemical Composition, Functional Properties, and Antioxidant Activities of Chinese Sturgeon (Acipenser Sinensis) Hydrolysates Obtained by Using Alcalase 2.4L. J. Aquat. Food Prod. Technol. 2019, 28(6), 583–597. DOI: 10.1080/10498850.2019.1626523.
  • Amza, T.; Balla, A.; Tounkara, F.; Man, L.; Zhou, H. M. Effect of Hydrolysis Time on Nutritional, Functional and Antioxidant Properties of Protein Hydrolysates Prepared from Gingerbread Plum (Neocarya Macrophylla) Seeds. Int. Food Res. J. 2013, 20(5), 2081.
  • Noman, A.; Xu, Y.; AL-Bukhaiti, W. Q.; Abed, S. M.; Ali, A. H.; Ramadhan, A. H.; Xia, W. Influence of Enzymatic Hydrolysis Conditions on the Degree of Hydrolysis and Functional Properties of Protein Hydrolysate Obtained from Chinese Sturgeon (Acipenser Sinensis) by Using Papain Enzyme. Process Biochem. 2018, 67, 19–28. DOI: 10.1016/j.procbio.2018.01.009.
  • Jiang, J.; Chen, J.; Xiong, Y. L. Structural and Emulsifying Properties of Soy Protein Isolate Subjected to Acid and Alkaline PH-Shifting Processes. J. Agric. Food. Chem. 2009, 57(16), 7576–7583. DOI: 10.1021/jf901585n.
  • Zhang, T.; Jiang, B.; Mu, W.; Wang, Z. Emulsifying Properties of Chickpea Protein Isolates: Influence of PH and NaCl. Food Hydrocoll. 2009, 23(1), 146–152. DOI: 10.1016/j.foodhyd.2007.12.005.
  • Ge, Y.; Sun, A.; Ni, Y.; Cai, T. Some Nutritional and Functional Properties of Defatted Wheat Germ Protein. J. Agric. Food. Chem. 2000, 48(12), 6215–6218. DOI: 10.1021/jf000478m.
  • Wang, Y.; Wang, Z.; Handa, C. L.; Xu, J. Effects of Ultrasound Pre-Treatment on the Structure of β-Conglycinin and Glycinin and the Antioxidant Activity of Their Hydrolysates. Food Chem. 2017, 218, 165–172. DOI: 10.1016/j.foodchem.2016.09.069.
  • Saiga, A.; Tanabe, S.; Nishimura, T. Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment. J. Agric. Food. Chem. 2003, 51(12), 3661–3667. DOI: 10.1021/jf021156g.
  • Bao, X.-L.; Lv, Y.; Yang, B.-C.; Ren, C.-G.; Guo, S.-T. A Study of the Soluble Complexes Formed During Calcium Binding by Soybean Protein Hydrolysates. J. Food Sci. 2008, 73(3), C117–C121. DOI: 10.1111/j.1750-3841.2008.00673.x.
  • Jiang, L.; Wang, B.; Li, B.; Wang, C.; Luo, Y. Preparation and Identification of Peptides and Their Zinc Complexes with Antimicrobial Activities from Silver Carp (Hypophthalmichthys Molitrix) Protein Hydrolysates. Food Res. Int. 2014, 64, 91–98. DOI: 10.1016/j.foodres.2014.06.008.
  • Siahbalaei, R.; Kavoosi, G.; Noroozi, M. Protein Nutritional Quality, Amino Acid Profile, Anti-Amylase and Anti-Glucosidase Properties of Microalgae: Inhibition and Mechanisms of Action Through in vitro and in silico Studies. LWT. 2021, 150, 112023. DOI: 10.1016/j.lwt.2021.112023.