2,439
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Potential protein phycocyanin: an overview on its properties, extraction, and utilization

, , , &
Pages 3160-3176 | Received 28 Jul 2023, Accepted 12 Oct 2023, Published online: 31 Oct 2023

References

  • Raj, R.; Kumari, M.; Kumari, P. B. Blue Green Algae (BGA) and Its Application. J. Pharmacogn. Phytochem. 2020, 9(2), 287–296. DOI: 10.22271/phyto.2020.v9.i2i.10904.
  • Gӓrtner, G.; Stoyneva-Gӓrtner, M.; Uzunov, B. Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins. Apr 29, 2021, 13(5), 322. DOI: 10.3390/toxins13050322.
  • Tiwari, S.; Patel, A.; Pandey, N.; Singh, G.; Pandey, A.; Prasad, S. M. Photosynthesis and Energy Flow in Cyanobacteria. In Ecophysiology and Biochemistry of Cyanobacteria, Prasad, S. M. ed. Springer Nature Singapore: Singapore, 2022; pp. 49–64.
  • Stal, L. J., Cretoiu, M. S. The Marine Microbiome. Springer International: Switzerland; 2016. [online]. (accessed on 21 november 2020). https://link.springer.com/book/10.1007%2F978-3-319-33000-6
  • Li, M.; Ma, J.; Li, X.; Sui, S. F. In situ Cryo-ET Structure of Phycobilisome–Photosystem II Supercomplex from Red Alga. Elife. Sep 13, 2021, 10, e69635. DOI: 10.7554/eLife.69635.
  • Espinoza-Corral R.; Iwai, M.; Zavrel, T.; Lechno-Yossef, S.; Sutter, M.; Cerveny, J.; Niyogi, K. K.; Kerfeld, C. The Phycobilisome Linker Protein ApcG Interacts with Photosystem II and Regulates Energy Transfer to Photosystem I in Synechocystis Sp. PCC 6803. bioRxiv. 2023, 2023–2025.
  • Chiang, Y. H.; Huang, Y. J.; Fu, H. Y. Energetic Decoupling of Phycobilisomes from Photosystem II Involved in Nonphotochemical Quenching in Red Algae. bioRxiv. Jan 23, 2022. DOI: 10.1101/2022.01.21.477255.
  • Liu, H. AlphaFold and Structural Mass Spectrometry Enable Interrogations on the Intrinsically Disordered Regions in Cyanobacterial Light-Harvesting Complex Phycobilisome. J. Mol. Biol. Nov 15, 2022, 434(21), 167831. DOI: 10.1016/j.jmb.2022.167831.
  • Weiss, G. L.; Eisenstein, F.; Kieninger, A. K.; Xu, J.; Minas, H. A.; Gerber, M.; Feldmüller, M.; Maldener, I.; Forchhammer, K.; Pilhofer, M. Structure of a Thylakoid-Anchored Contractile Injection System in Multicellular Cyanobacteria. Nat. Microbiol. Mar 2022, 7(3), 386–396. DOI: 10.1038/s41564-021-01055-y.
  • Mullineaux, C. W.; Liu, L. N. Membrane Dynamics in Phototrophic Bacteria. Annu. Rev. Microbiol. Sep 8, 2020, 74(1), 633–654. DOI: 10.1146/annurev-micro-020518-120134.
  • Zhu, Q., Yan, K., Dong, Y., Wang, Y. Rhizosphere Bacterial Communities and Soil Nutrient Conditions Reveal Sexual Dimorphism of Populus deltoides. J. For. Res. Jun 2023, 34(3), 761–771. DOI: 10.1007/s11676-022-01517-x.
  • Hachicha, R., Elleuch, F., Ben Hlima, H., Dubessay, P., de Baynast, H., Delattre, C., Pierre, G., Hachicha, R., Abdelkafi, S., Michaud, P., Fendri, I. Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Appl. Sci. Feb 12, 2022, 12(4), 1924. DOI: 10.3390/app12041924.
  • Sun, L.; Wang, S.; Chen, L.; Gong, X. Promising Fluorescent Probes from Phycobiliproteins. IEEE J. Sel. Top. Quantum Electron. Oct 27, 2003, 9(2), 177–188. DOI: 10.1109/JSTQE.2003.812499.
  • Li, X., Hou, W., Lei, J., Chen, H., Wang, Q. The Unique Light-Harvesting System of the Algal Phycobilisome: Structure, Assembly Components, and Functions. Int. J. Mol. Sci. Jun 4, 2023, 24(11), 9733. DOI: 10.3390/ijms24119733.
  • Kawakami, K.; Hamaguchi, T.; Hirose, Y.; Kosumi, D.; Miyata, M.; Kamiya, N.; Yonekura, K. Core and Rod Structures of a Thermophilic Cyanobacterial Light-Harvesting Phycobilisome. Nat. Commun. Jun 17, 2022, 13(1), 3389. DOI: 10.1038/s41467-022-30962-9.
  • Avci, S., Haznedaroglu, B. Z. Pretreatment of Algal and Cyanobacterial Biomass for High Quality Phycocyanin Extraction. J. Appl. Phycol. Aug 2022, 34(4), 2015–2026. DOI: 10.1007/s10811-022-02770-7.
  • Al-Malki, A. L. In vitro Cytotoxicity and Pro-Apoptotic Activity of Phycocyanin Nanoparticles from Ulva Lactuca (Chlorophyta) Algae. Saudi J. Biol. Sci. Mar 1, 2020, 27(3), 894–898. DOI: 10.1016/j.sjbs.2019.12.037.
  • Pentón-Rol, G.; Marín-Prida, J.; McCarty, M. F. C-Phycocyanin-Derived Phycocyanobilin as a Potential Nutraceutical Approach for Major Neurodegenerative Disorders and COVID-19-induced Damage to the Nervous System. Curr. Neuropharmacol. Dec 12, 2021, 19(12), 2250. DOI: 10.2174/1570159X19666210408123807.
  • Braune, S.; Krüger-Genge, A.; Kammerer, S.; Jung, F.; Küpper, J. H. Phycocyanin from Arthrospira Platensis as Potential Anti-Cancer Drug: Review of in vitro and in vivo Studies. Life. Jan 27, 2021, 11(2), 91. DOI: 10.3390/life11020091.
  • Betterle, N., Hidalgo Martinez, D., Melis, A. Cyanobacterial Production of Biopharmaceutical and Biotherapeutic Proteins. Front. Plant Sci. Mar 3, 2020, 11, 237. DOI: 10.3389/fpls.2020.00237.
  • Sanfilippo, J. E.; Garczarek, L.; Partensky, F.; Kehoe, D. M. Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. Annu. Rev. Microbiol. Sep 8, 2019, 73(1), 407–433. DOI: 10.1146/annurev-micro-020518-115738.
  • Liu, J., Zhang, X., Sui, Z., Zhang, X., Mao, Y. Cloning and Characterization of C-Phycocyanin Operon from the Cyanobacterium Arthrospira Platensis FACHB341. J. Appl. Phycol. Mar 1, 2005, 17(2), 181–185. DOI: 10.1007/s10811-005-6418-2.
  • Choudhury, A. K.; Biswas, R. K. Algal Phytochemicals from Different Algal Forms with an Emphasis on Genomic Insights into Their Nutraceutical and Pharmaceutical Applications. In Phytochemical Genomics: Plant Metabolomics and Medicinal Plant Genomics, Swamy, M. K., Kumar, A., Eds. Singapore: Springer Nature Singapore, Jan 1, 2023, pp. 175–215.
  • Ranjbar, S.; Malcata, F. X. Challenges and Prospects for Sustainable Microalga-Based Oil: A Comprehensive Review, with a Focus on Metabolic and Genetic Engineering. Fuel. Sep 15, 2022, 324, 124567. DOI: 10.1016/j.fuel.2022.124567.
  • Veaudor, T.; Blanc-Garin, V.; Chenebault, C.; Diaz-Santos, E.; Sassi, J. F.; Cassier-Chauvat, C.; Chauvat, F. Recent Advances in the Photoautotrophic Metabolism of Cyanobacteria: Biotechnological Implications. Life. May 19, 2020, 10(5), 71. DOI: 10.3390/life10050071.
  • Lu, Y.; Zhang, X. The Upstream Sequence of the Phycocyanin β Subunit Gene from Arthrospira Platensis Regulates Expression of Gfp Gene in Response to Light Intensity. Electr. J. Biotech. 15 Apr 2005, 8(1) DOI: 10.2225/vol8-issue1-fulltext-9
  • Chen, H., Qi, H., Xiong, P. Phycobiliproteins—A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar. Drugs. Jul 9, 2022, 20(7), 450. DOI: 10.3390/md20070450.
  • Sloth, J. K.; Wiebe, M. G.; Eriksen, N. T. Accumulation of Phycocyanin in Heterotrophic and Mixotrophic Cultures of the Acidophilic Red Alga Galdieria Sulphuraria. Enzyme Microb. Technol. Jan 3, 2006, 38(1–2), 168–175. DOI: 10.1016/j.enzmictec.2005.05.010.
  • Chaneva, G., Furnadzhieva, S., Minkova, K., Lukavsky, J. Effect of Light and Temperature on the Cyanobacterium Arthronema Africanum-A Prospective Phycobiliprotein-Producing Strain. J. Appl. Phycol. Oct 1, 2007, 19(5), 537–544. DOI: 10.1007/s10811-007-9167-6.
  • Devi, A.; Kalwani, M.; Patil, K.; Kumari, A.; Tyagi, A.; Shukla, P.; Pabbi, S. Microalgal Bio-Pigments: Production and Enhancement Strategies to Enrich Microalgae-Derived Pigments. In Cyanobacterial Biotechnology in the 21st Century, Neilan, B., ed. Singapore: Springer Nature Singapore, Jun 24, 2023, pp. 85–106.
  • Dagnino-Leone, J.; Figueroa, C. P.; Castañeda, M. L.; Youlton, A. D.; Vallejos-Almirall, A.; Agurto-Muñoz, A.; Pérez, J. P.; Agurto-Muñoz, C. Phycobiliproteins: Structural Aspects, Functional Characteristics, and Biotechnological Perspectives. Comp. & Struct. Biotech. J. 2022 Jan 1, 20,1506–1527. DOI: 10.1016/j.csbj.2022.02.016.
  • Liu, Q.; Huang, Y.; Zhang, R.; Cai, T.; Cai, Y. Medical Application of Spirulina Platensis Derived C-Phycocyanin. Evid. Based Complement. Altern. Med. 2016, 2016(Jan 1; 2016), 1–14. DOI: 10.1155/2016/7803846.
  • Mohammadi-Gouraji, E., Soleimanian-Zad, S., Ghiaci, M. Phycocyanin-Enriched Yogurt and Its Antibacterial and Physicochemical Properties During 21 Days of Storage. LWT. Mar 1, 2019, 102, 230–236. DOI: 10.1016/j.lwt.2018.09.057.
  • Jespersen, L.; Strømdahl, L. D.; Olsen, K.; Skibsted, L. H. Heat and Light Stability of Three Natural Blue Colorants for Use in Confectionery and Beverages. Eur. Food Res. Technol. Mar 1, 2005, 220(3–4), 261–266. DOI: 10.1007/s00217-004-1062-7.
  • Prado, J. M.; Veggi, P. C.; Náthia-Neves, G.; Meireles, M. A. Extraction Methods for Obtaining Natural Blue Colorants. Curr. Anal. Chem. Aug 1, 2020, 16(5), 504–532. DOI: 10.2174/1573411014666181115125740.
  • Hahn, J.; Kuehne, R.; Schmieder, P. Solution-State 15 N NMR Spectroscopic Study of α-C-Phycocyanin: Implications for the Structure of the Chromophore-Binding Pocket of the Cyanobacterial Phytochrome Cph1. ChemBiochem. Dec 17, 2007, 8(18), 2249–2255. DOI: 10.1002/cbic.200700256.
  • Earthrise Californian Spirulina, from https://www.earthrise.com. [Online] Retrieved November 6, 2020.
  • Duangsee, R.; Phoopat, N.; Ningsanond, S. Phycocyanin Extraction from Spirulina Platensis and Extract Stability Under Various pH and Temperature. Asian. J. Food & Agro-Indus. 2009, 2(4), 819–826.
  • Fernández-Rojas, B., Hernández-Juárez, J., Pedraza-Chaverri, J. Nutraceutical Properties of Phycocyanin. J. Funct. Foods. Nov 1, 2014, 11, 375–392. DOI: 10.1016/j.jff.2014.10.011.
  • Chittapun, S., Jonjaroen, V., Khumrangsee, K., Charoenrat, T. C-Phycocyanin Extraction from Two Freshwater Cyanobacteria by Freeze Thaw and Pulsed Electric Field Techniques to Improve Extraction Efficiency and Purity. Algal Res. Mar 1, 2020, 46, 101789. DOI: 10.1016/j.algal.2020.101789.
  • Guo, W.; Zeng, M.; Zhu, S.; Li, S.; Qian, Y.; Wu, H. Phycocyanin Ameliorates Mouse Colitis via Phycocyanobilin-Dependent Antioxidant and Anti-Inflammatory Protection of the Intestinal Epithelial Barrier. Food Funct. 2022, 13(6), 3294–3307. DOI: 10.1039/D1FO02970C.
  • Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. Feb 1, 2006, 101(2), 87–96. DOI: 10.1263/jbb.101.87.
  • Sandybayeva, S. K., Kossalbayev, B. D., Zayadan, B. K., Sadvakasova, A. K., Bolatkhan, K., Zadneprovskaya, E. V., Kakimov, A. B., Alwasel, S., Leong, Y. K., Allakhverdiev, S. I., Chang, J. S. Prospects of Cyanobacterial Pigment Production: Biotechnological Potential and Optimization Strategies. Biochem. Eng. J. Nov 1, 2022, 187, 108640. DOI: 10.1016/j.bej.2022.108640.
  • Deviram, G., Mathimani, T., Anto, S., Ahamed, T. S., Ananth, D. A., Pugazhendhi, A. Applications of Microalgal and Cyanobacterial Biomass on a Way to Safe, Cleaner and a Sustainable Environment. J. Cleaner Prod. Apr 20, 2020, 253, 119770. DOI: 10.1016/j.jclepro.2019.119770.
  • Villaró, S.; Acién, G.; Alarcón, J.; Á, R.; Rodríguez-Chikri, L.; Viviano, E.; Lafarga, T. A Zero-Waste Approach for the Production and Use of Arthrospira Platensis as a Protein Source in Foods and as a Plant Biostimulant in Agriculture. J. Appl. Phycol. Jun2, 2023, 1–2. 10.1007/s10811-023-02993-2.
  • Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I. C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M., et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. Jan 27, 2021, 7, 626389. DOI: 10.3389/fmars.2020.626389.
  • Matos, A. P.; Vadiveloo, A.; Bahri, P. A.; Moheimani, N. R. Anaerobic Digestate Abattoir Effluent (ADAE), a Suitable Source of Nutrients for Arthrospira Platensis Cultivation. Algal Res. Apr 1, 2021, 54, 102216. DOI: 10.1016/j.algal.2021.102216.
  • Li, Z., Liu, Y., Zhou, T., Cao, L., Cai, Y., Wang, Y., Cui, X., Yan, H., Ruan, R., Zhang, Q. Effects of Culture Conditions on the Performance of Arthrospira Platensis and Its Production of Exopolysaccharides. Foods. Jul 8, 2022, 11(14), 2020. DOI: 10.3390/foods11142020.
  • Silva, S. C.; Ferreira, I. C.; Dias, M. M.; Barreiro, M. F. Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. Molecules. Jul 28, 2020, 25(15), 3406. DOI: 10.3390/molecules25153406.
  • Stramarkou, M., Papadaki, S., Kyriakopoulou, K., Tzovenis, I., Chronis, M., Krokida, M. Comparative Analysis of Different Drying Techniques Based on the Qualitative Characteristics of Spirulina Platensis Biomass. J. Aquat. Food Prod. Technol. May 28, 2021, 30(5), 498–516. DOI: 10.1080/10498850.2021.1900969.
  • Shayesteh, H.; Laird, D. W.; Hughes, L. J.; Nematollahi, M. A.; Kakhki, A. M.; Moheimani, N. R. Co-Producing Phycocyanin and Bioplastic in Arthrospira Platensis Using Carbon-Rich Wastewater. BioTech. Jul 3, 2023, 12(3), 49. DOI: 10.3390/biotech12030049.
  • Chen, T.; Zheng, W.; Yang, F.; Bai, Y.; Wong, Y. S. Mixotrophic Culture of High Selenium-Enriched Spirulina Platensis on Acetate and the Enhanced Production of Photosynthetic Pigments. Enzyme Microb. Technol. Jun 1, 2006, 39(1), 103–107. DOI: 10.1016/j.enzmictec.2005.10.001.
  • Pereira, M. I.; Chagas, B. M.; Sassi, R.; Medeiros, G. F.; Aguiar, E. M.; Borba, L. H.; Silva, E. P.; Neto, J. C.; Rangel, A. H.; Šiler, B. T. Mixotrophic Cultivation of Spirulina Platensis in Dairy Wastewater: Effects on the Production of Biomass, Biochemical Composition and Antioxidant Capacity. Plos One. Oct 24, 2019, 14(10), e0224294. DOI: 10.1371/journal.pone.0224294.
  • Portillo, F. V.; Sierra-Ibarra, E.; Vera-Estrella, R.; Revah, S.; Ramírez, O. T.; Caspeta, L.; Martinez, A. Growth and Phycocyanin Production with Galdieria Sulphuraria UTEX 2919 Using Xylose, Glucose, and Corn Stover Hydrolysates Under Heterotrophy and Mixotrophy. Algal Res. Jun 1, 2022, 65, 102752. DOI: 10.1016/j.algal.2022.102752.
  • Tosuner, Z. V.; RÖ, Ü. Evaluation of Sucrose as Carbon Source in Mixotrophic Culture of Arthrospira Platensis Gomont 1892. Aquat. Res. Jan 1, 2020, 3(1), 1–2. DOI: 10.3153/AR20001.
  • Papadopoulos, K. P.; Economou, C. N.; Markou, G.; Nicodemou, A.; Koutinas, M.; Tekerlekopoulou, A. G.; Vayenas, D. V. Cultivation of Arthrospira Platensis in Brewery Wastewater. Water. May 12, 2022, 14(10), 1547. DOI: 10.3390/w14101547.
  • Chen, Q., Chen, Y., Xiao, L., Li, Y., Zou, S., Han, D. Co-Production of Lutein, Zeaxanthin, and β-Carotene by Utilization of a Mutant of the Green Alga Chromochloris Zofingiensis. Algal Res. Nov 1, 2022, 68, 102882. DOI: 10.1016/j.algal.2022.102882.
  • Fu, H. Y., Liu, S. L., Chiang, Y. R. Biosynthesis of Ascorbic Acid as a Glucose-Induced Photoprotective Process in the Extremophilic Red Alga Galdieria Partita. Front. Microbiol. Jan 14, 2020, 10, 3005. DOI: 10.3389/fmicb.2019.03005.
  • Graverholt, O. S.; Eriksen, N. T. Heterotrophic High-Cell-Density Fed-Batch and Continuous-Flow Cultures of Galdieria Sulphuraria and Production of Phycocyanin. Applied Microbiology and Biotechnology. Appl. Microbiol. Biotechnol. Nov 1, 2007, 77(1), 69–75. DOI: 10.1007/s00253-007-1150-2.
  • Kuddus, M.; Singh, P.; Thomas, G.; Al-Hazimi, A. Recent Developments in Production and Biotechnological Applications of C-Phycocyanin. Biomed Res. Int. Jan 1, 2013, 2013, 1–9. DOI: 10.1155/2013/742859.
  • Erikson, N. T. Production of Phycocyanin—A Pigment with Applications in Biology, Biotechnology, Foods and Medicine. Appl. Microbiol. Biotechnol. 2008, 80(1), 1–4. DOI: 10.1007/s00253-008-1542-y.
  • Nazar, R.; Yousuff, M. I.; Nooruddin, T.; Dharumadurai, D. Small-Scale Production and Business Plan for Phycocyanin from Cyanobacteria. In Food Microbiology Based Entrepreneurship: Making Money from Microbes, 1st ed.; Amaresan, N., Dharumadurai, D., Babalola, O. O., Eds. Singapore: Springer Nature Singapore, Jan 1, 2023, pp. 253–277. DOI: 10.1007/978-981-19-5041-4_14.
  • Doke, J. M. An Improved and Efficient Method for the Extraction of Phycocyanin from Spirulina Sp. Int. J. Food Eng. 5 Dec 2005, 1(5) DOI: 10.2202/1556-3758.1037
  • Oliveira, E. G., Rosa, G. S., Moraes, M. A., Pinto, L. A. Phycocyanin Content of Spirulina Platensis Dried in Spouted Bed and Thin Layer. J. Food Process Eng. Feb 2008, 31(1), 34–50. DOI: 10.1111/j.1745-4530.2007.00143.x.
  • Jian-Feng, N. I.; Guang-Ce, W. A.; Lin, X. Z.; Zhou, B. C. Large-Scale Recovery of C-Phycocyanin from Spirulina Platensis Using Expanded Bed Adsorption Chromatography. J. Chromatogr. B. May 1, 2007, 850(1–2), 267–276. DOI: 10.1016/j.jchromb.2006.11.043.
  • Lauceri, R., Zittelli, G. C., Torzillo, G. A Simple Method for Rapid Purification of Phycobiliproteins from Arthrospira Platensis and Porphyridium Cruentum Biomass. Algal Res. Dec 1, 2019, 44, 101685. DOI: 10.1016/j.algal.2019.101685.
  • Giannoglou, M., Andreou, V., Thanou, I., Markou, G., Katsaros, G. High Pressure Assisted Extraction of Proteins from Wet Biomass of Arthrospira Platensis (Spirulina)–A Kinetic Approach. Innovative Food Science Emerging Technologies. Oct 1, 2022, 81, 103138. DOI: 10.1016/j.ifset.2022.103138.
  • Akaberi, S.; Krust, D.; Müller, G.; Frey, W.; Gusbeth, C. Impact of Incubation Conditions on Protein and C-Phycocyanin Recovery from Arthrospira Platensis Post-Pulsed Electric Field Treatment. Bioresour. Technol. Jun 1, 2020, 306, 123099. DOI: 10.1016/j.biortech.2020.123099.
  • Jiang, L., Yu, S., Pei, H. Seawater-Cultured Spirulina Subsalsa as a More Promising Host for Phycocyanin Production Than Arthrospira Platensis. Algal Res. Dec 1, 2021, 60, 102545. DOI: 10.1016/j.algal.2021.102545.
  • Patil, G.; Raghavarao, K. S. Aqueous Two-Phase Extraction for Purification of C-Phycocyanin. Biochem. Eng. J. May 1, 2007, 34(2), 156–164. DOI: 10.1016/j.bej.2006.11.026.
  • Rahman, D. Y.; Sarian, F. D.; van der Maarel, M. J. Biomass and Phycocyanin Content of Heterotrophic Galdieria Sulphuraria 074G Under Maltodextrin and Granular Starches–Feeding Conditions. J. Appl. Phycol. Feb 2020, 32(1), 51–57. DOI: 10.1007/s10811-019-01957-9.
  • Moraes, C. C., Sala, L., Cerveira, G. P., Kalil, S. J. C-Phycocyanin Extraction from Spirulina Platensis Wet Biomass. Braz. J. Chem. Eng. Mar 2011, 28(1), 45–49. DOI: 10.1590/S0104-66322011000100006.
  • Scherhag, P.; Ackermann, J. U. Removal of Sugars in Wastewater from Food Production Through Heterotrophic Growth of Galdieria Sulphuraria. Eng. Life Sci. Mar 2021, 21(3–4), 233–241. DOI: 10.1002/elsc.202000075.
  • Niu, J. F.; Wang, G. C.; Tseng, C. K. Method for Large-Scale Isolation and Purification of R-Phycoerythrin from Red Alga Polysiphonia Urceolata Grev. Protein Expr. Purif. Sep 1, 2006, 49(1), 23–31. DOI: 10.1016/j.pep.2006.02.001.
  • Marzorati, S., Schievano, A., Antonio, I., Verotta, L. Carotenoids, Chlorophylls and Phycocyanin fromSpirulina: Supercritical CO2and Water Extraction methods for Added Value Products Cascade. 2020 Nov 9.
  • Adir, N., Lerner, N. The Crystal Structure of a Novel Unmethylated Form of C-Phycocyanin, a Possible Connector Between Cores and Rods in Phycobilisomes. J. Biol. Chem. Jul 11, 2003, 278(28), 25926–25932. DOI: 10.1074/jbc.M302838200.
  • Gorgich, M.; Passos, M. L.; Mata, T. M.; Martins, A. A.; Saraiva, M. L.; Caetano, N. S. Enhancing Extraction and Purification of Phycocyanin from Arthrospira sp. with Lower Energy Consumption. Energy Reports. Dec 1, 2020, 6, 312–318. DOI: 10.1016/j.egyr.2020.11.151.
  • Medeiros, F. O.; Alves, F. G.; Lisboa, C. R.; Martins, D. D.; Burkert, C. A.; Kalil, S. J. Ondas ultrassônicas e pérolas de vidro: um novo método de extração de beta-galactosidase para uso em laboratório. Quím. nova. 2008, 31(2), 336–339. DOI: 10.1590/S0100-40422008000200028.
  • Kenemer, C.; Thomas, C. S.; Neeley, A. R.; Mannino, A. Improving Quantitative Laboratory Analysis of Phycobiliproteins to Provide High Quality Validation Data for Ocean Color Remote Sensing Algorithm. Ocean Sciences Meeting. Patent GSFC-E-DAA-TN78612. Feb 16, 2020.
  • Fernandes, R.; Campos, J.; Serra, M.; Fidalgo, J.; Almeida, H.; Casas, A.; Toubarro, D.; AIRNA, B. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals. 2023, 16(4), 592. DOI: 10.3390/ph16040592.
  • Winayu, B. N.; Lai, K. T.; Hsueh, H. T.; Chu, H. Production of Phycobiliprotein and Carotenoid by Efficient Extraction from Thermosynechococcus sp. CL-1 Cultivation in Swine Wastewater. Bioresour. Technol. Jan 1, 2021, 319, 124125. DOI: 10.1016/j.biortech.2020.124125.
  • Thevarajah, B.; Nishshanka, G. K.; Premaratne, M.; Nimarshana, P. H.; Nagarajan, D.; Chang, J. S.; Ariyadasa, T. U. Large-Scale Production of Spirulina-Based Proteins and C-Phycocyanin: A Biorefinery Approach. Biochem. Eng. J. Jul 1, 2022, 185, 108541. DOI: 10.1016/j.bej.2022.108541.
  • Taufikurahman, T.; Ilhamsyah, D. P.; Rosanti, S.; Ardiansyah, M. A. Preliminary Design of Phycocyanin Production from Spirulina platensis Using Anaerobically Digested Dairy Manure Wastewater. Presented at International Conference on Renewable Energy and Sustainable Built Environment, Bandung, Indonesia, September 14, 2019. Indonesia: IOP Publishing. Vol. 520. p. 012007. DOI: 10.1088/1755-1315/520/1/012007.
  • Leung, P. O.; Lee, H. H.; Kung, Y. C.; Tsai, M. F.; Chou, T. C. Therapeutic Effect of C-Phycocyanin Extracted from Blue Green Algae in a Rat Model of Acute Lung Injury Induced by Lipopolysaccharide. Evid. Based Complement. Altern. Med. 2013, 2013, 1–11. DOI: 10.1155/2013/916590.
  • Padyana, A. K.; Bhat, V. B.; Madyastha, K. M.; Rajashankar, K. R.; Ramakumar, S. Crystal Structure of a Light-Harvesting Protein C-Phycocyanin from Spirulina Platensis. Biochem. Biophys. Res. Commun. Apr 13, 2001, 282(4), 893–898. DOI: 10.1006/bbrc.2001.4663.
  • Wan, M., Zhao, H., Guo, J., Yan, L., Zhang, D., Bai, W., Li, Y. Comparison of C-Phycocyanin from Extremophilic Galdieria Sulphuraria and Spirulina Platensis on Stability and Antioxidant Capacity. Algal Res. Oct 1, 2021, 58, 102391. DOI: 10.1016/j.algal.2021.102391.
  • Wang, X. Q.; Li, L. N.; Chang, W. R.; Zhang, J. P.; Gui, L. L.; Guo, B. J.; Liang, D. C. Structure of C-Phycocyanin from Spirulina Platensis at 2.2 Å Resolution: A Novel Monoclinic Crystal Form for Phycobiliproteins in Phycobilisomes. Acta Crystallogr. D Biol. Crystallogr. Jun 1, 2001, 57(6), 784–792. DOI: 10.1107/S0907444901004528.
  • Adir, N.; Dobrovetsky, Y.; Lerner, N. Structure of C-Phycocyanin from the Thermophilic Cyanobacterium Synechococcus Vulcanus at 2.5 Å: Structural Implications for Thermal Stability in Phycobilisome Assembly 1 1Edited by R. Huber. J. Mol. Biol. Oct 12, 2001, 313(1), 71–81. DOI: 10.1006/jmbi.2001.5030.
  • Contreras-Martel, C., Matamala, A., Bruna, C., Poo-Caamaño, G., Almonacid, D., Figueroa, M., Martínez-Oyanedel, J., Bunster, M. The Structure at 2 Å Resolution of Phycocyanin from Gracilaria Chilensis and the Energy Transfer Network in a PC–PC Complex. Biophys Chem. Feb 1, 2007, 125(2–3), 388–396. DOI: 10.1016/j.bpc.2006.09.014.
  • Jiang, T.; Zhang, J. P.; Chang, W. R.; Liang, D. C. Crystal Structure of R-Phycocyanin and Possible Energy Transfer Pathways in the Phycobilisome. Biophys. J. Aug 1, 2001, 81(2), 1171–1179. DOI: 10.1016/S0006-3495(01)75774-8.
  • Benedetti, S., Rinalducci, S., Benvenuti, F., Francogli, S., Pagliarani, S., Giorgi, L., Micheloni, M., D’Amici, G. M., Zolla, L., Canestrari, F. Purification and Characterization of Phycocyanin from the Blue-Green Alga Aphanizomenon Flos-Aquae. J. Chromatogr. B. Mar 20, 2006, 833(1), 12–18. DOI: 10.1016/j.jchromb.2005.10.010.
  • Li, S.; Ji, L.; Shi, Q.; Wu, H.; Fan, J. Advances in the Production of Bioactive Substances from Marine Unicellular Microalgae Porphyridium Spp. Bioresour. Technol. Nov 1, 2019, 292, 122048. DOI: 10.1016/j.biortech.2019.122048.
  • Minato, T.; Teramoto, T.; Adachi, N.; Hung, N. K.; Yamada, K.; Kawasaki, M.; Akutsu, M.; Moriya, T.; Senda, T.; Ogo, S., et al. Non-Conventional Octameric Structure of C-Phycocyanin. Comm. Bio. Oct 29, 2021, 4(1), 1238. DOI: 10.1038/s42003-021-02767-x.
  • Kupka, M.; Scheer, H. Unfolding of C-Phycocyanin Followed by Loss of Non-Covalent Chromophore–Protein Interactions: 1. Equilibrium experiments. Biochimica et Biophysica Acta (BBA)-Bioenergetics. Jan 1, 2008, 1777(1), 94–103. DOI: 10.1016/j.bbabio.2007.10.009.
  • Fukui, K.; Saito, T.; Noguchi, Y.; Kodera, Y.; Matsushima, A.; Nishimura, H.; Inada, Y. Relationship Between Color Development and Protein Conformation in the Phycocyanin Molecule. Dyes Pigm. Oct 1, 2004, 63(1), 89–94. DOI: 10.1016/j.dyepig.2003.12.016.
  • Vinothkanna, A.; Sekar, S. Diagnostic Applications of Phycobiliproteins. In Pigments from Microalgae Handbook, Jacob-Lopes, E., Queiroz, M. I., Zepka, L. Q., Eds. Cham: Springer, 2020; pp 585–610. DOI: 10.1007/978-3-030-50971-2_24.
  • Patel, R.; de Oliveira, A.; Newby, J. R.; Chu, T. Flow Cytometric Analysis of Freshwater Cyanobacteria: A Case Study. Water. Jul 11, 2019, 11(7), 1422. DOI: 10.3390/w11071422.
  • Ashaolu, T. J.; Samborska, K.; Lee, C. C.; Tomas, M.; Capanoglu, E.; Ö, T.; Taze, B.; Jafari, S. M. Phycocyanin, a Super Functional Ingredient from Algae; Properties, Purification Characterization, and Applications. Int. J. Biol. Macromol. Dec 15, 2021, 193, 2320–2331. DOI: 10.1016/j.ijbiomac.2021.11.064.
  • Almuhtaram, H.; Kibuye, F. A.; Ajjampur, S.; Glover, C. M.; Hofmann, R.; Gaget, V.; Owen, C.; Wert, E. C.; Zamyadi, A. State of Knowledge on Early Warning Tools for Cyanobacteria Detection. Ecological Indicators. Dec 1, 2021, 133, 108442. DOI: 10.1016/j.ecolind.2021.108442.
  • Lyu, L.; Song, K.; Wen, Z.; Liu, G.; Fang, C.; Shang, Y.; Li, S.; Tao, H.; Wang, X.; Li, Y., et al. Remote Estimation of Phycocyanin Concentration in Inland Waters Based on Optical Classification. Sci. Total Environ. Nov 15, 2023, 899, 166363. DOI: 10.1016/j.scitotenv.2023.166363.
  • Wang, C.; Liu, T.; Jia, Z.; Su, M.; Dong, Y.; Guo, Q.; Yang, M.; Yu, J. Unraveling the Source-Water Fishy Odor Occurrence During Low-Temperature Periods: Odorants Identification, Typical Algae Species and Odor-Producing Potential. Sci. Total Environ. Sep14, 2023, 166998. 10.1016/j.scitotenv.2023.166998.
  • Kraseasintra, O.; Tragoolpua, Y.; Pandith, H.; Khonkarn, R.; Pathom-Aree, W.; Pekkoh, J.; Pumas, C. Application of Phycocyanin from Arthrospira (Spirulina) Platensis as a Hair Dye. Front. Mar. Sci. Nov 1, 2022, 9, 1024988. DOI: 10.3389/fmars.2022.1024988.
  • Zanolla, V., Biondi, N., Niccolai, A., Abiusi, F., Adessi, A., Rodolfi, L., Tredici, M. R. Protein, Phycocyanin, and Polysaccharide Production by Arthrospira Platensis Grown with LED Light in Annular Photobioreactors. J. Appl. Phycol. Jun 2022, 34(3), 1189–1199. DOI: 10.1007/s10811-022-02707-0.
  • Hernández, H., Nunes, M. C., Prista, C., Raymundo, A. Innovative and Healthier Dairy Products Through the Addition of Microalgae: A Review. Foods. Mar 5, 2022, 11(5), 755. DOI: 10.3390/foods11050755.
  • Bhattacharjee, M. Spirulina in modern medical therapy: current knowledge. Asian. J. Pharm. Clin. Res. 2018, 6(3), 105–114.
  • Singh, S. K.; Kaur, R.; Bansal, A.; Kapur, S.; Sundaram, S. Biotechnological Exploitation of Cyanobacteria and Microalgae for Bioactive Compounds. In Biotechnological Production of Bioactive Compounds, Verma, M. L., Chandel, A. K., Eds. Amsterdam, The Netherlands: Elsevier, Jan 1, 2020; pp. 221–259. DOI: 10.1016/B978-0-444-64323-0.00008-4.
  • Frazzini, S.; Scaglia, E.; Dell’anno, M.; Reggi, S.; Panseri, S.; Giromini, C.; Lanzoni, D.; Sgoifo Rossi, C. A.; Rossi, L. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An in vitro Study. Antioxidants. May 19, 2022, 11(5), 992. DOI: 10.3390/antiox11050992.
  • Park, J.; Lee, H.; Dinh, T. B.; Choi, S.; De Saeger, J.; Depuydt, S.; Brown, M. T.; Han, T. Commercial Potential of the Cyanobacterium Arthrospira Maxima: Physiological and Biochemical Traits and the Purification of Phycocyanin. Biology. Apr 20, 2022, 11(5), 628. DOI: 10.3390/biology11050628.
  • Inkanuwat, A.; Sukaboon, R.; Reamtong, O.; Asawanonda, P.; Pattaratanakun, A.; Saisavoey, T.; Sangtanoo, P.; Karnchanatat, A. Nitric Oxide Synthesis Inhibition and Anti-Inflammatory Effect of Polypeptide Isolated from Chicken Feather Meal in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Food Technol. Biotechnol. Jun 2019, 57(2), 200. DOI: 10.17113/ftb.57.02.19.5964.
  • Grover, P., Bhatnagar, A., Kumari, N., Bhatt, A. N., Nishad, D. K., Purkayastha, J. C-Phycocyanin-A Novel Protein from Spirulina Platensis-In Vivo Toxicity, Antioxidant and Immunomodulatory Studies. Saudi J. Biol. Sci. Mar 1, 2021, 28(3), 1853–1859. DOI: 10.1016/j.sjbs.2020.12.037.
  • Jiang, P., Meng, J., Zhang, L., Huang, L., Wei, L., Bai, Y., Liu, X., Li, S. Purification and Anti-Inflammatory Effect of Selenium-Containing Protein Fraction from Selenium-Enriched Spirulina Platensis. Food Biosci. Feb 1, 2022, 45, 101469. DOI: 10.1016/j.fbio.2021.101469.
  • Wang, H., Liu, Y., Gao, X., Carter, C. L., Liu, Z. R. The Recombinant β Subunit of C-Phycocyanin Inhibits Cell Proliferation and Induces Apoptosis. Cancer Lett. Mar 8, 2007, 247(1), 150–158. DOI: 10.1016/j.canlet.2006.04.002.
  • El-Naggar, N. E.; Hussein, M. H.; El-Sawah, A. A. Bio-Fabrication of Silver Nanoparticles by Phycocyanin, Characterization, in vitro Anticancer Activity Against Breast Cancer Cell Line and in vivo Cytotoxicity. Sci. Rep. Sep 7, 2017, 7(1), 1–20. DOI: 10.1038/s41598-017-11121-3.