512
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Non-destructive Identification of the geographical origin of red jujube by near-infrared spectroscopy and fuzzy clustering methods

ORCID Icon, , , ORCID Icon, &
Pages 3275-3290 | Received 11 Aug 2023, Accepted 04 Nov 2023, Published online: 22 Nov 2023

References

  • Yang, J.; Hou, Y.; Chang, N. Determination of Amino Acid Content and Principal Component Analysis of Shanxi Jujube. Food Res. Dev. 2021, 42, 141–145.
  • Mairemu, S. Y. Establishment of near infrared spectroscopy for Jun jujube sugar of different mature period. Anhui Agric. Sci. Bull. 2017, 23, 143–145.
  • Al-Saif, A. M.; Abdel-Sattar, M.; Aboukarima, A. M.; Eshra, D. H. Identification of Indian Jujube Varieties Cultivated in Saudi Arabia Using an Artificial Neural Network. Saudi J. Biol. Sci. 2021, 28(10), 5765–5772. DOI: 10.1016/j.sjbs.2021.06.019.
  • Huynh, Q.-K.; Nguyen, C.-N.; Vo-Nguyen, H.-P.; Tran-Nguyen, P. L.; Le, P.-H.; Le, D.-K.; Nguyen, V.-C. Crack Identification on the Fresh Chilli (Capsicum) Fruit Destemmed System. J. Sens. 2021, 2021, 10. DOI: 10.1155/2021/8838247.
  • Sabzi, S.; Abbaspour-Gilandeh, Y.; Garcıa-Mateos, G. A New Approach for Visual Identification of Orange Varieties Using Neural Networks and Metaheuristic Algorithms. Inform. Process. Agric. 2018, 5(1), 162–172. DOI: 10.1016/j.inpa.2017.09.002.
  • Meng, X.; Yuan, Y. C.; Teng, G.; Liu, T. Z. Deep Learning for Fine-Grained Classification of Jujube Fruit in the Natural Environment. J. Food Meas. Charact. 2021, 15(5), 4150–4165. DOI: 10.1007/s11694-021-00990-y.
  • Song, L. H.; Cao, B.; Zhang, Y.; Meinhardt, L. W.; Zhang, D. P. Mining Single Nucleotide Polymorphism (SNP) Markers for Accurate Genotype Identification and Diversity Analysis of Chinese Jujube (Ziziphus Jujuba Mill.) Germplasm. Agronomy. 2021, 11(11), 2303. DOI: 10.3390/agronomy11112303.
  • Wang, S. M.; Sun, J.; Fu, L. H.; Xu, M.; Tang, N. Q.; Cao, Y.; Yao, K. S.; Jing, J. P. Identification of Red Jujube Varieties Based on Hyperspectral Imaging Technology Combined with CARS-IRIV and SSA-SVM. J. Food Process. Eng. 2022, 45(10), e14137. DOI: 10.1111/jfpe.14137.
  • Ma, G. L.; Zheng, Z. M.; Wang, H.; Wang, L.; Zhao, G. H.; Tang, H. F.; Ding, X. M.; Wang, Q.; Fan, S.; Wang, P. Effect of Solution Supersaturation on Crystal Formation of Vitamin K2 Based on Near Infrared Spectroscopy Analysis Technology. J. Cryst. Growth. 2023, 605, 127034. DOI: 10.1016/j.jcrysgro.2022.127034.
  • Song, K.; Qin, Y. H.; Xu, B. Y.; Zhang, N. Q.; Yang, J. J. Study on Outlier Detection Method of the Near Infrared Spectroscopy Analysis by Probability Metric. Spectrochim. Acta A. 2022, 280, 121473. DOI: 10.1016/j.saa.2022.121473.
  • Gao, B.; Xu, X. D.; Han, L. J.; Liu, X. A Novel Near Infrared Spectroscopy Analytical Strategy for Meat and Bone Meal Species Discrimination Based on the Insight of Fraction Composition Complexity. Food Chem. 2021, 344, 128645. DOI: 10.1016/j.foodchem.2020.128645.
  • Wu, B.; Fu, H. J.; Wu, X. H.; Chen, Y.; Jia, H. W. Classification of FTNIR spectra of tea via possibilistic fuzzy discriminant C-means clustering, Spectrosc. Spect. Anal. 2020, 40, 512–516.
  • Yap, X. Y.; Chia, K. S.; Suarin, N. A. S. Adaptive artificial neural network in near infrared spectroscopy for standard-free calibration transfer. Chemometr. Intell. Lab. 2022, 230, 104674. DOI: 10.1016/j.chemolab.2022.104674.
  • Liu, H. M.; Shen, T.; Zhang, W. Y.; Shi, X. W.; Dai, T.; Bai, T.; Xiao, Y. H. Construction and Verification of a Mathematical Model for Near-Infrared Spectroscopy Analysis of Gel Consistency in Southern Indica Rice. Spectrosc. Spect. Anal. 2021, 41, 2432–2436.
  • Wu, X.; Zeng, S.; Fu, H.; Wu, B.; Zhou, H.; Dai, C. Determination of Corn Protein Content Using Near-Infrared Spectroscopy Combined with A-CARS-PLS. Food Chem. X. 2023, 18, 100666. DOI: 10.1016/j.fochx.2023.100666.
  • Zhang, X.; Chen, K.; Deng, T.; Yuan, J.; Zhou, R.; Yu, T.; Zhou, Y.; Song, E. Highly Distorted Cr3±doped Fluoroantimonate with High Absorption Efficiency for Multifunctional Near-Infrared Spectroscopy Applications. Mater. Today Chem. 2022, 26, 101194. DOI: 10.1016/j.mtchem.2022.101194.
  • Couto, C. D. C.; Freitas-Silva, O.; Oliveira, M.; Sousa, E. M. M.; S, C. C. Near-Infrared Spectroscopy Applied to the Detection of Multiple Adulterants in Roasted and Ground Arabica Coffee. Foods. 2021, 11(1), 35010188. DOI: 10.3390/foods11010061.
  • Kawano, S. Past, Present and Future Near Infrared Spectroscopy Applications for Fruit and Vegetables. NIR News. 2016, 27(1), 7–9. DOI: 10.1255/nirn.1574.
  • Winowiecki, L. A.; Tor-Gunnar, V.; Boeckx, P.; Dungait, J. A. J. Landscape-Scale Assessments of Stable Carbon Isotopes in Soil Under Diverse Vegetation Classes in East Africa: Application of Near-Infrared Spectroscopy. Plant Soil. 2017, 421(1–2), 259–272. DOI: 10.1007/s11104-017-3418-3.
  • Xu, X.; Cheng, F.; Ying, Y. B. Application and Recent Development of Research on Near-Infrared Spectroscopy for Meat Quality Evaluation. Spectrosc. Spect. Anal. 2009, 29, 1876–1880.
  • Yu, X.; Xu, Y. F.; Li, J. B.; Zhang, C.; Fan, S. C. Recent advances in emerging techniques for non-destructive detection of seed viability: a review. Artif. Intell. Agr. 2019, 1, 35–47. DOI: 10.1016/j.aiia.2019.05.001.
  • Huang, H.; Yu, H.; Xu, H.; Ying, Y. Near Infrared Spectroscopy for On/in-Line Monitoring of Quality in Foods and Beverages: A Review. J. Food Eng. 2008, 87(3), 303–313. DOI: 10.1016/j.jfoodeng.2007.12.022.
  • Nicolaï, B. M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K. I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest. Biol. Technol. 2007, 46(2), 99–118. DOI: 10.1016/j.postharvbio.2007.06.024.
  • Xia, Y.; Huang, W.; Fan, S.; Li, J.; Chen. L.Effect of Fruit Moving Speed on Online Prediction of Soluble Solids Content of Apple Using Vis/NIR Diffuse Transmission. J. Food Process. Eng. 2018, 41, e12915. DOI: 10.1111/jfpe.12915.
  • Kusumaningrum, D.; Lee, H.; Lohumi, S.; Mo, C.; Kim, M. S.; Cho, B.-K. Non-Destructive Technique for Determining the Viability of Soybean (Glycine Max) Seeds Using FT-NIR Spectroscopy. J. Sci. Food Agric. 2018, 98(5), 1734–1742. DOI: 10.1002/jsfa.8646.
  • Mo, C.; Kim, G.; Lee, K.; Kim, M. S.; Cho, B.-K.; Lim, J.; Kang, S. Non-Destructive Quality Evaluation of Pepper (Capsicum Annuum L.) Seeds Using LED-Induced Hyperspectral Reflectance Imaging. Sensors. 2014, 14(4), 7489–7504. DOI: 10.3390/s140407489.
  • Pieszczek, L.; Czarnik-Matusewicz, H.; Daszykowski, M. Identification of Ground Meat Species Using Near-Infrared Spectroscopy and Class Modeling Techniques – Aspects of Optimization and Validation Using a One-Class Classification Model. Meat Sci. 2018, 139, 15–24. DOI: 10.1016/j.meatsci.2018.01.009.
  • Li, Y. J.; Ma, B. X.; Hu, Y. T.; Yu, G. W.; Zhang, Y. J. Detecting Starch-Head and Mildewed Fruit in Dried Hami Jujubes Using Visible/near-Infrared Spectroscopy Combined with MRSA-SVM and Oversampling. Foods. 2022, 11(16), 36010431. DOI: 10.3390/foods11162431.
  • Wu, X. H.; Wu, B.; Sun, J.; Yang, N. Classification of Apple Varieties Using Near Infrared Reflectance Spectroscopy and Fuzzy Discriminant C-Means Clustering Model. J. Food Process. Eng. 2017, 40(2), e12355. DOI: 10.1111/jfpe.12355.
  • Rahmawati, L.; Pahlawan, M. F. R.; Hariadi, H.; Masithoh, R. E. Detection of Encapsulant Addition in Butterfly-Pea (Clitoria Ternatea L.) Extract Powder Using Visible–Near-infrared Spectroscopy and Chemometrics Analysis. Open. Agric. 2022, 7(1), 711–723. DOI: 10.1515/opag-2022-0135.
  • Yu, D. X.; Guo, S.; Zhang, X.; Yan, H.; Zhang, Z. Y.; Chen, X.; Chen, J. Y.; Jin, S. J.; Yang, J.; Duan, J. A. Rapid Detection of Adulteration in Powder of Ginger (Zingiber Officinale Roscoe) by FT-NIR Spectroscopy Combined with Chemometrics. Food Chem. X. 2022, 15, 100450. DOI: 10.1016/j.fochx.2022.100450.
  • Zhang, T.; Wu, X.; Wu, B.; Dai, C.; Fu, H. Rapid Authentication of the Geographical Origin of Milk Using Portable Near-Infrared Spectrometer and Fuzzy Uncorrelated Discriminant Transformation. J. Food Process. Eng. 2022, 45(8), e14040. DOI: 10.1111/jfpe.14040.
  • Li, H.; Yang, J.; Zhou, S. Z. Design of fire alarm system of intelligent camera based on fuzzy recognition algorithm. J. Intell. Fuzzy Syst. 2021, 41, 4479–4491. DOI: 10.3233/JIFS-189708.
  • Wen, L. F.; Yang, Y.; Li, Y. L. A Comprehensive Evaluation Method of Safety Behavior of Concrete Face Rockfill Dam Based on Regression Relationship Method and Fuzzy Recognition Model. IOP Conf. Ser. Earth Environ. Sci. 2021, 643, 012070. DOI: 10.1088/1755-1315/643/1/012070.
  • Ding, Y. L.; Yang, B. R.; Xu, G. C.; Wang, X. Y. Improved Dempster–Shafer Evidence Theory for Tunnel Water Inrush Risk Analysis Based on Fuzzy Identification Factors of Multi-Source Geophysical Data. Remote Sens-Base. 2022, 14(23), 14236178. DOI: 10.3390/rs14236178.
  • Yang, C.; Yang, J. X. Design of Back Propagation Optimized Nagar-Bardini Structure-Based Interval Type-2 Fuzzy Logic Systems for Fuzzy Identification. T. I. Meas. Control. 2021, 43(12), 2780–2787. DOI: 10.1177/01423312211006635.
  • Barzegaran, J.; Shahni, D. R. F. M. Estimation of IRI from PASER Using ANN Based on K-Means and Fuzzy C-Means Clustering Techniques: A Case Study. Int. J. Pavement Eng. 2022, 23, 5153–5167. DOI: 10.1080/10298436.2021.2000988.
  • Kannan, S. R.; Devi, R.; Ramathilagam, S.; Takezawa, K. Effective FCM noise clustering algorithms in medical images. Comput. Biol. Med. 2013, 43, 73–83. DOI: 10.1016/j.compbiomed.2012.10.002.
  • Pal, N. R.; Pal, K.; Keller, J. M.; Bezdek, J. C. A Possibilistic Fuzzy C-Means Clustering Algorithm. IEEE Trans. FUZZY Syst. 2005, 13(4), 517–530. DOI: 10.1109/TFUZZ.2004.840099.
  • Huang, Y.; Guan, Y. On the Linear Discriminant Analysis for Large Number of Classes. Eng. Appl. Artif. Intell. 2015, 43, 15–26. DOI: 10.1016/j.engappai.2015.03.006.
  • Zainuddin, Z.; Laswi, A. S. Implementation of the LDA Algorithm for Online Validation Based on Face Recognition. J. Phys.: Conf. Ser. 2017, 801, 012047. DOI: 10.1088/1742-6596/801/1/012047.
  • Park, L.-J. A spatial regularization of LDA for face recognition. Int. J. Fuzzy Lod Inte. 2010, 10(2), 95–100. DOI: 10.5391/IJFIS.2010.10.2.095.
  • Zhu, F.; Gao, J.; Yang, J.; Ye, N. Neighborhood Linear Discriminant Analysis. Pattern Recogn. 2022, 123, 108422. DOI: 10.1016/j.patcog.2021.108422.
  • Park, H.; Baek, S.; Park, J. High-Dimensional Linear Discriminant Analysis Using Nonparametric Methods. J. Multivariate Anal. 2022, 188, 104836. DOI: 10.1016/j.jmva.2021.104836.
  • Zheng, F. C. Facial Expression Recognition Based on LDA Feature Space Optimization. Comput. Intel. Neurosc. 2022, 2022, 9521329. DOI: 10.1155/2022/9521329.
  • Li, B.; Ding, H. Y.; Zhou, M. J. Semi-Supervised LDA and Multi-Distance Metric Learning for Person Re-Identification. J. Phys.: Conf. Ser. 2022, 2171(1), 012054. DOI: 10.1088/1742-6596/2171/1/012054.
  • Xie, C. R.; Tian, X. L.; Feng, X. C.; Zhang, X. N.; Ruana, J. H. Preference Characteristics on consumers’ Online Consumption of Fresh Agricultural Products Under the Outbreak of COVID-19: An Analysis of Online Review Data Based on LDA Model. Procedia Comput. Sci. 2022, 207, 4486–4495. DOI: 10.1016/j.procs.2022.09.512.
  • Song, N. Q.; Zhang, J. T. Fuzzy C-Means Clustering Applied to the Classification of Glycyrrhiza Uralensis Communities in North China. Autom. Control Intell. Syst. 2017, 5, 73–73. DOI: 10.11648/j.acis.20170505.13.
  • Krishnapuram, R.; Keller, J. M. A Possibilistic Approach to Clustering. IEEE Trans. FUZZY Syst. 1993, 1(2), 98–110. DOI: 10.1109/91.227387.
  • Chen, C.; Li, H. Y.; Lv, X. Y.; Tang, J.; Chen, C.; Zheng, X. X. Application of Near Infrared Spectroscopy Combined with SVR Algorithm in Rapid Detection of cAMP content in Red Jujube. Optik. 2019, 194, 163063. DOI: 10.1016/j.ijleo.2019.163063.
  • Gao, Q. H.; Wu, P. T.; Liu, J. R.; Wu, C. S.; Parry, J. W.; Min, W. Physico-Chemical Properties and Antioxidant Capacity of Different Jujube (Ziziphus Jujuba Mill.) Cultivars Grown in Loess Plateau of China. Sci. Hortic-Amsterdam. 2011, 130(1), 67–72. DOI: 10.1016/j.scienta.2011.06.005.
  • Lang, Y. M.; Cheng, Y.; Yang, H. R.; Cheng, Q. Z.; Liu, Q.; Wang, X. T.; Bian, P. S.; Yang, X. X. Study on Identification of Red Jujube Origin by Multi-Element Analysis. Qual. Assur. Saf. Crop. 2022, 14(4), 178–187. DOI: 10.15586/qas.v14i4.1139.
  • Gao, L. J.; Han, F.; Zhang, X. W.; Liu, B.; Fan, D. W.; Sun, X.; Zhang, Y. F.; Yan, L. G.; Dong, W. Simultaneous Nitrate and Dissolved Organic Matter Removal from Wastewater Treatment Plant Effluent in a Solid-Phase Denitrification Biofilm Reactor. Bioresource. Technol. 2020, 314, 123714. DOI: 10.1016/j.biortech.2020.123714.
  • Qi, Z. X.; Wu, X. H.; Yang, Y. J.; Wu, B.; Fu, H. J. Discrimination of the Red Jujube Varieties Using a Sortable NIR Spectrometer and Fuzzy Improved Linear Discriminant Analysis. Foods. 2022, 11(5), 763–763. DOI: 10.3390/foods11050763.
  • Shi, X. W.; Yao, L. J.; Pan, T. Visible and Near-Infrared Spectroscopy with Multi-Parameters Optimization of Savitzky-Golay Smoothing Applied to Rapid Analysis of Soil Cr Content of Pearl River Delta. J. Geosci. Environ. Prot. 2021, 9(3), 75–83. DOI: 10.4236/gep.2021.93006.