491
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of ultrasound-assisted enzymatic hydrolysis of channel catfish (Ictalurus punctatus) frames yield high-calcium and high-amino acid hydrolysates

, , , , , , , & show all
Pages 3393-3406 | Received 14 Jun 2023, Accepted 07 Oct 2023, Published online: 27 Nov 2023

References

  • Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2022; Food and Agriculture Organization of the United Nations: Rome, 2022.
  • Viglia, S.; Brown, M. T.; Love, D. C.; Fry, J. P.; Scroggins, R.; Neff, R. A. Analysis of Energy and Water Use in USA Farmed Catfish: Toward a More Resilient and Sustainable Production System. J. Cleaner Prod. 2022, 379(2), 134796. DOI: 10.1016/j.jclepro.2022.134796.
  • Zhou, Z.; Dai, Y. Y.; Yuan, Y.; He, Y. H.; Zhou, J. Status, Trends, and Prospects of the Channel Catfish Industry in China and the Impact of the COVID-19 Epidemic. Israeli J. Aquacult. Bamidgeh. 2021, 73, 1490779. DOI: 10.46989/001c.27636.
  • Zhang, Y.; Chang, S. K. C. Protein Extraction from Catfish Byproducts and Physicochemical Properties of the Protein Isolates. J. Food Sci. 2021, 86(7), 3061–3074. DOI: 10.1111/1750-3841.15805.
  • Sousa, P. M.; Moreira, M. J.; de Moura, A. P.; Lima, R. C.; Cunha, L. M. Consumer Perception of the Circular Economy Concept Applied to the Food Domain: An Exploratory Approach. Sustainability. 2021, 13(20), 11340. DOI: 10.3390/su132011340.
  • Borges, S.; Odila, J.; Voss, G.; Martins, R.; Rosa, A.; Couto, J. A.; Almeida, A.; Pintado, M. Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates. Molecules. 2023, 28(3), 1155. DOI: 10.3390/molecules28031155.
  • Naghdi, S.; Rezaei, M.; Tabarsa, M.; Abdollahi, M. Fish Protein Hydrolysate from Sulfated Polysaccharides Extraction Residue of Tuna Processing By-Products with Bioactive and Functional Properties. Global Challeng. 2023, 7(4), 2200214. DOI: 10.1002/gch2.202200214.
  • Gao, P.; Zhang, Z.; Ge, Y.; Cao, S.; Zhang, X.; Jiang, Q.; Xu, Y.; Xia, W.; Liu, S. Co-Inoculation of Lactiplantibacillus pentosus 1 and Saccharomyces cerevisiae 31 for a Salt-Free Fish Sauce Production from Channel Catfish (Ietalurus punetaus) Bone. Food Biosci. 2022, 50, 102137. DOI: 10.1016/j.fbio.2022.102137.
  • Izadiyan, P.; Hemmateenejad, B. Multi-Response Optimization of Factors Affecting Ultrasonic Assisted Extraction from Iranian Basil Using Central Composite Design. Food Chem. 2016, 190, 864–870. DOI: 10.1016/j.foodchem.2015.06.036.
  • Zhu, Y.; Zhang, M.; Law, C. L.; Wang, Y.; Liu, K. Optimization of Ultrasonic-Assisted Enzymatic Hydrolysis to Extract Soluble Substances from Edible Fungi By-Products. Food Bioprocess. Technol. 2023, 16(1), 167–184. DOI: 10.1007/s11947-022-02930-0.
  • Kangsanant, S.; Murkovic, M.; Thongraung, C. Antioxidant and nitric oxide inhibitory activities of tilapia (O reochromis niloticus) protein hydrolysate: effect of ultrasonic pretreatment and ultrasonic-assisted enzymatic hydrolysis. Inter. J. Food Sci. Technol. 2014, 49(8), 1932–1938. DOI: 10.1111/ijfs.12680.
  • Du, C.; Cui, F.; Zhang, W.; Feng, Q.; Zhu, X.; De Groot, K. Formation of Calcium Phosphate/Collagen Composites Through Mineralization of Collagen Matrix. J. Biomed. Mater. Res. 2000, 50(4), 518–527. DOI: 10.1002/(SICI)1097-4636(20000615)50:4<518:AID-JBM7>3.0.CO;2-W.
  • Khuri, A. I.; Mukhopadhyay, S. Response Surface Methodology. Wiley Interdisciplinary Rev. 2010, 2(2), 128–149. DOI: 10.1002/wics.73.
  • Ahmadkelayeh, S.; Cheema, S. K.; Hawboldt, K. Extraction of Astaxanthin from Atlantic Shrimp By-Products Using Fish Oil: Process Optimization and Operational Parameter Effects. J. Cleaner Prod. 2022, 371, 133609. DOI: 10.1016/j.jclepro.2022.133609.
  • Bui, X. D.; Vo, C. T.; Bui, V. C.; Pham, T. M.; Bui, T. T. H.; Nguyen-Sy, T.; Show, P. L.; Chew, K. W.; Mukatova, M. D.; Show, P. L. Optimization of Production Parameters of Fish Protein Hydrolysate from Sardaorientalis Black Muscle (By-Product) Using Protease Enzyme. Clean Technol. Environ. Policy. 2021, 23(1), 31–40. DOI: 10.1007/s10098-020-01867-2.
  • Haq, M.; Getachew, A. T.; Saravana, P. S.; Cho, Y.-J.; Park, S.-K.; Kim, M.-J.; Chun, B.-S. Effects of Process Parameters on EPA and DHA Concentrate Production from Atlantic Salmon By-Product Oil: Optimization and Characterization. Korean J. Chem. Eng. 2017, 34(8), 2255–2264. DOI: https://doi.org/10.1007/s11814-016-0362-5.
  • Nielsen, P.; Petersen, D.; Dambmann, C. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 2001, 66(5), 642–646. DOI: 10.1111/j.1365-2621.2001.tb04614.x.
  • Kirk, P. L. Kjeldahl Method for Total Nitrogen. Anal. Chem. 1950, 22(2), 354–358. DOI: 10.1021/ac60038a038.
  • Rutherfurd, S. M. Methodology for Determining Degree of Hydrolysis of Proteins in Hydrolysates: A Review. J. AOAC Int. 2010, 93(5), 1515–1522. DOI: 10.1093/jaoac/93.5.1515.
  • Chen, N.; Jiang, Q.; Gao, P.; Yu, D.; Yang, F.; Xu, Y.; Xia, W. Gel Properties, Physicochemical Properties, and Sensory Attributes of White Leg Shrimp (Litopenaeus vannamei) Surimi Gel Treated with Sodium Chloride (NaCl) Substitutes. Int. J. Food Sci. Tech. 2023, 58(1), 22–36. DOI: https://doi.org/10.1111/ijfs.16157.
  • Wang, Y.; Li, B.; Guo, Y.; Liu, C.; Liu, J.; Tan, B.; Guo, Z.; Wang, Z.; Jiang, L. Effects of Ultrasound on the Structural and Emulsifying Properties and Interfacial Properties of Oxidized Soybean Protein Aggregates. Ultrason. Sonochem. 2022, 87, 106046. DOI: 10.1016/j.ultsonch.2022.106046.
  • Al-Bukhaiti, W. Q.; Al-Dalali, S.; Noman, A.; Qiu, S.; Abed, S. M.; Qiu, S.-X. Response Surface Modeling and Optimization of Enzymolysis Parameters for the In Vitro Antidiabetic Activities of Peanut Protein Hydrolysates Prepared Using Two Proteases. Foods. 2022, 11(20), 3303. DOI: 10.3390/foods11203303.
  • Bruno Siewe, F.; Kudre, T. G.; Narayan, B. Optimisation of Ultrasound-Assisted Enzymatic Extraction Conditions of Umami Compounds from Fish By-Products Using the Combination of Fractional Factorial Design and Central Composite Design. Food Chem. 2021, 334, 127498. DOI: 10.1016/j.foodchem.2020.127498.
  • Schützenmeister, A.; Jensen, U.; Piepho, H.-P. Checking Normality and Homoscedasticity in the General Linear Model Using Diagnostic Plots. Commun. Stat.- Simul. Comput. 2012, 41(2), 141–154. DOI: 10.1080/03610918.2011.582560.
  • Chen, L.; Ettelaie, R.; Akhtar, M. Improved Enzymatic Accessibility of Peanut Protein Isolate Pre-Treated Using Thermosonication. Food Hydrocolloids. 2019, 93, 308–316. DOI: 10.1016/j.foodhyd.2019.02.050.
  • Cichowska, J.; Witrowa-Rajchert, D.; Stasiak-Rozanska, L.; Figiel, A. Ultrasound-Assisted Osmotic Dehydration of Apples in Polyols and Dihydroxyacetone (DHA) Solutions. Molecules. 2019, 24(19), 3429. DOI: https://doi.org/10.3390/molecules24193429.
  • Reche, C.; Rossello, C.; Umana, M. M.; Eim, V.; Simal, S. Mathematical Modelling of Ultrasound-Assisted Extraction Kinetics of Bioactive Compounds from Artichoke By-Products. Foods. 2021, 10(5), 931. DOI: 10.3390/foods10050931.
  • Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A. G.; Carpena, M.; Prieto, M. A.; Simal-Gandara, J.; Prieto, M. A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health. 2021, 18(17), 9153. DOI: 10.3390/ijerph18179153.
  • Zeng, S. I.; Wang, K.; Wu, G. Y.; Liu, X. W.; Hu, Z. Y.; Li, W. C.; Zhao, L. Time-Specific Ultrasonic Treatment of Litchi Thaumatin-Like Protein Inhibits Inflammatory Response in RAW264.7 Macrophages via NF-Κb and MAPK Transduction Pathways. Ultrason. Sonochem. 2023, 95, 106355. DOI: 10.1016/j.ultsonch.2023.106355.
  • Liu, X.; Sun, X.; Wei, Y.; Ma, Y.; Sun, P.; Li, X. Effects of Ultrasonic Treatment on Physico-Chemical Properties and Structure of Tuna (Thunnus tonggol) Myofibrillar Proteins. J. Food Compost. Anal. 2022, 108, 104438. DOI: 10.1016/j.jfca.2022.104438.
  • Jamshidi, A.; Shabanpour, B.; Pourashouri, P.; Raeisi, M. Evaluation of Different Proportions of Distilled Water to Substrate on Functional Properties, Antioxidant and Nutritional Quality of Bigeye Ilisha (Ilisha megaloptera) Protein Hydrolysate. Jorjani Biomed. J. 2018, 6(3), 24–39. DOI: 10.29252/jorjanibiomedj.6.3.24.
  • Sutthiwanjampa, C.; Kim, S. M. Production and Characterisation of Hyaluronidase and Elastase Inhibitory Protein Hydrolysates from Venus Clam. Nat. Prod. Res. 2015, 29(17), 1614–1623. DOI: 10.1080/14786419.2014.990903.
  • Jeon, Y.-J.; Karawita, R.; Heo, S.-J.; Kim, S.-K.; Song, C. B. Recovery of Bioavailable Calcium from Alaska Pollack (Theragra chalcogramma) Fish Backbone By-Products by Pepsinolytic Hydrolysis. Preventive Nutr. Food Sci. 2006, 11(2), 120–126. DOI: 10.3746/jfn.2006.11.2.120.
  • Ling, Z.; Ming-Gui, Z.; Rong, C.; Qi, L.; Hui-Hui, S. Optimization of Preparation Technology of Cod Mince Enzymolysis for Calcium Absorption-Promoting Peptides. J. Food Saf. Qual. 2018, 9(8), 1911–1917.
  • Guo, J.; Zhu, S.; Chen, H.; Zheng, Z.; Pang, J. Ultrasound-Assisted Solubilization of Calcium from Micrometer-Scale Ground Fish Bone Particles. Food Sci. Nutri. 2022, 10(3), 712–722. DOI: 10.1002/fsn3.2696.
  • Asih, I.; Kemala, T.; Nurilmala, M. (2019). Halal Gelatin Extraction from Patin Fish Bone (Pangasius hypophthalmus) By-Product with Ultrasound-Assisted Extraction. IOP Conference Series: Earth and Environmental Science, 299, 012061. 10.1088/1755-1315/299/1/012061
  • An, Y. Q.; Liu, Q.; Xie, Y. R.; Xiong, S. B.; Yin, T.; Liu, R. Aggregation and Conformational Changes of Silver Carp Myosin as Affected by the Ultrasound-Calcium Combination System. J. Sci. Food Agric. 2018, 98(14), 5335–5343. DOI: 10.1002/jsfa.9073.
  • Nagai, T.; Suzuki, N. Preparation and Characterization of Several Fish Bone Collagens. J. Food Biochem. 2000, 24(5), 427–436. DOI: 10.1111/j.1745-4514.2000.tb00711.x.
  • Xu, Y.; Galanopoulos, M.; Sismour, E.; Ren, S.; Mersha, Z.; Lynch, P.; Almutaimi, A. Effect of Enzymatic Hydrolysis Using Endo-And Exo-Proteases on Secondary Structure, Functional, and Antioxidant Properties of Chickpea Protein Hydrolysates. J. Food Meas. Charact. 2020, 14(1), 343–352. DOI: 10.1007/s11694-019-00296-0.
  • Qu, J.; Zhang, M.; Hong, T.; Xu, X.; Xu, D. Improvement of Adzuki Bean Paste Quality by Flavourzyme-Mediated Enzymatic Hydrolysis. Food Biosci. 2023, 51, 102205. DOI: 10.1016/j.fbio.2022.102205.
  • Yang, L.; Guo, Z.; Wei, J.; Han, L.; Yu, Q.-L.; Chen, H.; Chen, Y.; Zhang, W. Extraction of Low Molecular Weight Peptides from Bovine Bone Using Ultrasound-Assisted Double Enzyme Hydrolysis: Impact on the Antioxidant Activities of the Extracted Peptides. LWT. 2021, 146, 111470. DOI: 10.1016/j.lwt.2021.111470.
  • Jafarpour, A.; Gomes, R. M.; Gregersen, S.; Sloth, J. J.; Jacobsen, C.; Sørensen, A.-D. M. Characterization of Cod (Gadus morhua) Frame Composition and Its Valorization by Enzymatic Hydrolysis. J. Food Compost. Anal. 2020, 89, 103469. DOI: 10.1016/j.jfca.2020.103469.
  • Korkmaz, K.; Tokur, B. Optimization of Hydrolysis Conditions for the Production of Protein Hydrolysates from Fish Wastes Using Response Surface Methodology. Food Biosci. 2022, 45, 101312. DOI: 10.1016/j.fbio.2021.101312.