2,890
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Potential industrial and nutritional applications of shrimp by-products: a review

, , , , , , , , , , & show all
Pages 3407-3432 | Received 06 Jun 2023, Accepted 09 Nov 2023, Published online: 04 Dec 2023

References

  • FAO. The State of World Fisheries and Aquaculture (SOFIA). Sustain. Action Rome. 2020, 1–225. Published online 2020. DOI: 10.4060/ca9229en.
  • FAO. The State of World Fisheries and Aquaculture (SOFIA) 2022. Towar. Blue TranFsform. Rome. Published online 2022, 1–267. DOI: 10.4060/cc0461en.
  • IMARC. Shrimp Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022-2027. Glob. Shrimp Mark. Res. Rep. 2022-2027. Published online 2022. https://www.imarcgroup.com/prefeasibility-report-shrimp-processing-plant/requestsample.
  • Babar, S.; Shah, H.; Mu, Y.; Pavase, T. R.; Abbas, G. Current status of Shrimp Fishery in Pakistan : Economic Role, Challenges, Opportunities and Strategies for Aquaculture Development. Indian J. Geo Mar. Sci. 2019, 48(11), 1743–1754.
  • da Silva, A. K. N.; Rodrigues, B. D.; da Silva, L. H. M.; Rodrigues, A. M. D. C. Drying and Extraction of Astaxanthin from Pink Shrimp Waste (Farfantepenaeus subtilis): The Applicability of Spouted Beds. Food Sci. Technol. 2018, 38(3), 1–8. DOI: 10.1590/fst.31316.
  • Gao, J.; You, J.; Kang, J.; Nie, F.; Ji, H.; Liu, S. Recovery of Astaxanthin from Shrimp (Penaeus vannamei) Waste by Ultrasonic-Assisted Extraction Using Ionic Liquid-In-Water Microemulsions. Food Chem. 2020, 325(2020), 126850. DOI: 10.1016/j.foodchem.2020.126850.
  • Silva, D. M. L. E.; Damasceno, K. S. F. S. C.; Ribeiro, P. P. C.; Alcântra, M.; Cordeiro, A.; Passos, T. Chemical Characteristics and Antioxidant Activity of Astaxanthin Extracted from Shrimp Residues Using Soybean Oil. J. Braz. Chem. Soc. 2021, 32(6), 1277–1285. DOI: 10.21577/0103-5053.20210030.
  • Misir, B. G.; Kutlu, S.; Erteken, A.; Yaman, M.; Cevikkalp, S. A. Comparison of Flesh Quality of Deep Water Pink Shrimp (Parapenaeus longirostris, Lucas 1846) from Marmara, Aegean and Mediterranean Seas in Turkey. J. Food Nutr. Disord. 2017, 6(5), 1–17. DOI: 10.4172/2324-9323.1000235.
  • Nidheesh, T.; Suresh, P. V. Optimization of Conditions for Isolation of High Quality Chitin from Shrimp Processing Raw Byproducts Using Response Surface Methodology and Its Characterization. J. Food Sci. Technol. 2015, 52(6), 3812–3823. DOI: 10.1007/s13197-014-1446-z.
  • Ahmadkelayeh, S.; Cheema, S. K.; Hawboldt, K. Extraction of Astaxanthin from Atlantic Shrimp By-Products Using Fish Oil: Process Optimization and Operational Parameter Effects. J. Clean. Prod. 2022, 371, 133609. DOI: 10.1016/j.jclepro.2022.133609.
  • Ahmadkelayeh, S.; Cheema, S. K.; Hawboldt, K. Evaluation of Conventional Solvent Processes for Lipid and Astaxanthin Extraction from Shrimp Processing By-Products. Chem. Eng. Commun. 2023, 210(3), 398–411. DOI: 10.1080/00986445.2022.2050711.
  • Sila, A.; Ghlissi, Z.; Kamoun, Z.; Makni, M.; Nasri, M.; Bougatef, A.; Sahnoun, Z. Astaxanthin from Shrimp By-Products Ameliorates Nephropathy in Diabetic Rats. Eur. J. Nutr. 2015, 54(2), 301–307. DOI: 10.1007/s00394-014-0711-2.
  • Gómez-Estaca, J.; Calvo, M. M.; Sánchez-Faure, A.; Montero, P.; Gómez-Guillén, M. C. Development, Properties, and Stability of Antioxidant Shrimp Muscle Protein Films Incorporating Carotenoid-Containing Extracts from Food By-Products. LWT Food Sci. Technol. 2015, 64(1), 189–196. DOI: 10.1016/j.lwt.2015.05.052.
  • Gonçalves, A. A.; Junior, J. D. S. Shrimp Processing Residue as an Alternative Ingredient for New Product Development. Int. J. Food Sci. Technol. 2019, 54(9), 2736–2744. DOI: 10.1111/ijfs.14184.
  • Sila, A.; Sayari, N.; Balti, R. Biochemical and Antioxidant Properties of Peptidic Fraction of Carotenoproteins Generated from Shrimp By-Products by Enzymatic Hydrolysis. Food Chem. 2014, 148, 445–452. DOI: 10.1016/j.foodchem.2013.05.146.
  • Djellouli, M.; López-Caballero, M. E.; Arancibia, M. Y.; Karam, N.; Martínez-Alvarez, O. Antioxidant and Antimicrobial Enhancement by Reaction of Protein Hydrolysates Derived from Shrimp By-Products with Glucosamine. Waste Biomass Valorization. 2020, 11(6), 2491–2505. DOI: 10.1007/s12649-019-00607-y.
  • Fernandes, T. M.; Silva, J. A. D.; Silva, A. H. A. D.; Cavalheiro, J. M. D. O.; Conceição, M. L. D. Flour Production from Shrimp By-Products and Sensory Evaluation of Flour-Based Products. Pesqui. Agropecu. Bras. 2013, 48(8), 962–967. DOI: 10.1590/S0100-204X2013000800022.
  • Cheung, I. W. Y.; Li-Chan, E. C. Y. Application of Taste Sensing System for Characterisation of Enzymatic Hydrolysates from Shrimp Processing By-Products. Food Chem. 2014, 145, 1076–1085. DOI: 10.1016/j.foodchem.2013.09.004.
  • Panagiotakopoulos, I.; Karantonis, H. C.; Kartelias, I. G.; Nasopoulou, C. Ultrasonic-Assisted Extraction of Astaxanthin from Shrimp By-Products Using Vegetable Oils. Mar. Drugs. 2023, 21(9), 467. DOI: 10.3390/md21090467.
  • Abreu, A. D. S.; De Souza, M. M.; Da Rocha, M.; Wasielesky, W. F.; Prentice, C. Functional Properties of White Shrimp (Litopenaeus vannamei) By-Products Protein Recovered by Isoelectric Solubilization/Precipitation. J. Aquat. Food Prod. Technol. 2019, 28(6), 649–657. DOI: 10.1080/10498850.2019.1628151.
  • Wenwei, C.; Guangrong, H.; Zhenbao, J.; Yao, H. Optimization of Aqueous Enzymatic Extraction of Oil from Shrimp Processing By-Products Using Response Surface Methodology. Food Sci. Technol. 2019, 39(1), 231–236. DOI: 10.1590/fst.41717.
  • Treyvaud, A. V.; Kramp, K. L.; Mao, J.; McRae, C.; Goulah, A.; Kimpe, L. E.; Blais, J. M.; Arnason, J. T. Supercritical Carbon Dioxide Extraction of Polyunsaturated Fatty Acids from Northern Shrimp (Pandalus Borealis Kreyer) Processing By-Products. Food Chem. 2012, 130(4), 853–858. DOI: 10.1016/j.foodchem.2011.07.098.
  • Limam, Z.; Sadok, S.; Abed, A. E. Enzymatic Hydrolysis of Shrimp Head Waste: Functional and Biochemical Properties. Food Biotechnol. 2008, 22(4), 352–362. DOI: 10.1080/08905430802458461.
  • Sánchez-Camargo, A. P.; Meireles, M. Â. A.; Ferreira, A. L. K.; Saito, E.; Cabral, F. A. Extraction of ω-3 Fatty Acids and Astaxanthin from Brazilian Redspotted Shrimp Waste Using Supercritical CO2 + Ethanol Mixtures. J. Supercrit Fluids. 2012, 61, 71–77. DOI: 10.1016/j.supflu.2011.09.017.
  • Liu, Z.; Matouri, M.; Zahid, U.; Saldaña, M. D. A. Value-Added Compounds Obtained from Shrimp Shells Using Subcritical Water with Carboxylic Acids. J. Supercrit Fluids. 2023, 197, 105902. DOI: 10.1016/j.supflu.2023.105902.
  • Patil, R. D.; Shelte, A. R.; Biradar, A. V.; Pratihar, S. Sustainable and Selective Transfer Hydrogenation Using Waste Shrimp Shell-Based Tetrazene-Ru (II) Para-Cymene Catalyst with Ethanol as a Hydrogen Source. Appl. Organomet. Chem. 2023, 37(10), e7221. DOI: 10.1002/aoc.7221.
  • Liu, Z.; Liu, Q.; Zhang, D.; Wei, S.; Sun, Q.; Xia, Q.; Shi, W.; Ji, H.; Liu, S. Comparison of the Proximate Composition and Nutritional Profile of Byproducts and Edible Parts of Five Species of Shrimp. Foods. 2021, 10(11), 2603. DOI: 10.3390/foods10112603.
  • Bassig, R. A.; Obinque, A. V.; Nebres, V. T.; Santos, V. H. D.; Peralta, D. M.; Madrid, A. J. J. Utilization of Shrimp Head Wastes into Powder Form as Raw Material for Value-Added Products. Philipp. J. Fish. 2021, 28(1), 181–190. DOI: 10.31398/tpjf/28.2.2020A0010.
  • Jeyachandran, S.; Kiyun, P.; Ihn-Sil, K.; Baskaralingam, V. Identification and Characterization of Bioactive Pigment Carotenoids from Shrimps and Their Biofilm Inhibition. J. Food Process Preserv. 2020, 44(10), e14728. DOI: 10.1111/jfpp.14728.
  • Xin, R.; Xie, W.; Xu, Z.; Che, H.; Zheng, Z.; Yang, X. Efficient Extraction of Chitin from Shrimp Waste by Mutagenized Strain Fermentation Using Atmospheric and Room-Temperature Plasma. Int. J. Biol. Macromol. 2020, 155(2020), 1561–1568. DOI: 10.1016/j.ijbiomac.2019.11.133.
  • Guo, N.; Sun, J.; Zhang, Z.; Mao, X. Recovery of Chitin and Protein from Shrimp Head Waste by Endogenous Enzyme Autolysis and Fermentation. J. Ocean Univ. China. 2019, 18(3), 719–726. DOI: 10.1007/s11802-019-3867-9.
  • Phuong, P. T. D.; Minh, N. C.; Cuong, H. N.; Van Minh, N.; Han, N. T.; Van Hoa, N.; Yen, H. T. H.; Trung, T. S. Recovery of Protein Hydrolysate and Chitosan from Black Tiger Shrimp (Penaeus monodon) Heads: Approaching a Zero Waste Process. J. Food Sci. Technol. 2017, 54(7), 1850–1856. DOI: 10.1007/s13197-017-2616-6.
  • Mizani, A. M.; Aminlari, B. M. A New Process for Deproteinization of Chitin from Shrimp Head Waste. Proc. Eur. Congr. Chem. Eng. Copenhagen. 2007, 16–20.
  • Xu, X.; Li, Y.; Wu, J.; Zhang, L.; Wu, C. Isolating of the Endogenous Proteases Presenting in the Shrimp Head of Litopenaeus Vannamei and Their Enzymology Characterization. Rom. Biotechnol. Lett. 2018, (x), 1–15.
  • Okabe, Y.; Inoue, Y.; Kanda, Y.; Katsumata, T. Odor-Active Compounds Contributing to the Characteristic Aroma of Shrimp Cooked Whole, Including Shells and Viscera. Eur. Food Res. Technol. 2019, 245(1), 233–241. DOI: 10.1007/s00217-018-3156-7.
  • Taghizadeh Andevari, G.; Rezaei, M.; Tabarsa, M.; Rustad, T. Carotenoprotein from By-Product of Banana Shrimp (Penaeus merguiensis) Extracted Using Protease from Viscera of Rainbow Trout: Antiradical and Angiotensin I-Converting Enzyme Inhibitory Activity. Iran. J. Fish. Sci. 2021, 20(5), 1510–1525. DOI: 10.22092/ijfs.2021.350837.0.
  • Chavante, S. F.; Brito, A. S.; Lima, M.; Yates, E.; Nader, H.; Guerrini, M.; Torri, G.; Bisio, A. A Heparin-Like Glycosaminoglycan from Shrimp Containing High Levels of 3-O-Sulfated D -Glucosamine Groups in an Unusual Trisaccharide Sequence. Carbohydr. Res. 2014, 390(2014), 59–66. DOI: 10.1016/j.carres.2014.03.002.
  • Ketnawa, S.; Martínez-Alvarez, O.; Gómez-Estaca, J.; Gómez-Guillén, M. D. C.; Benjakul, S.; Rawdkuen, S. Obtaining of Functional Components from Cooked Shrimp (Penaeus vannamei) by Enzymatic Hydrolysis. Food Biosci. 2016, 15(2016), 55–63. DOI: 10.1016/j.fbio.2016.05.005.
  • Yan, N.; Chen, X. Sustainability: Don’t Waste Seafood Waste. Nature. 2015, 524(7564), 155–157. DOI: 10.1038/524155a.
  • Wang, L.; Hu, J.; Lv, W.; Lu, W.; Pei, D.; Lv, Y.; Wang, W.; Zhang, M.; Ding, R.; Lv, M. Optimized Extraction of Astaxanthin from Shrimp Shells Treated by Biological Enzyme and Its Separation and Purification Using Macroporous Resin. Food Chem. 2021, 363(2021), 130369. DOI: 10.1016/j.foodchem.2021.130369.
  • Srinivasan, H.; Kanayairam, V.; Ravichandran, R. Chitin and Chitosan Preparation from Shrimp Shells Penaeus Monodon and Its Human Ovarian Cancer Cell Line, PA-1. Int. J. Biol. Macromol. 2018, 107(Part A), 662–667. DOI: 10.1016/j.ijbiomac.2017.09.035.
  • Deng, J. J.; Mao, H. H.; Fang, W.; Li, Z.-Q.; Shi, D.; Li, Z.-W.; Zhou, T.; Luo, X.-C. Enzymatic Conversion and Recovery of Protein, Chitin, and Astaxanthin from Shrimp Shell Waste. J. Cleaner Prod. 2020, 271(2020), 122655. DOI: 10.1016/j.jclepro.2020.122655.
  • Jadhav, A. B.; Diwan, A. D. Studies on Antimicrobial Activity and Physicochemical Properties of the Chitin and Chitosan Isolated from Shrimp Shell Waste. Indian J. Geo-Marine Sci. 2018, 47(3), 674–680.
  • Darachai, P.; Limpawattana, M.; Hawangjoo, M.; Klaypradit, W. Effects of Shrimp Waste Types and Their Cooking on Properties of Extracted Astaxanthin and Its Characteristics in Liposomes. J. Food Nutr. Res. 2019, 7(7), 530–536. DOI: 10.12691/jfnr-7-7-7.
  • Varun, T. K.; Senani, S.; Jayapal, N.; Chikkerur, J.; Roy, S.; Tekulapally, V. B.; Gautam, M.; Kumar, N. Extraction of Chitosan and Its Oligomers from Shrimp Shell Waste, Their Characterization and Antimicrobial Effect. Vet. World. 2017, 10(2), 170–175. DOI: 10.14202/vetworld.2017.170-175.
  • Islam, S.; Khan, M.; Alam, A. N. Production of Chitin and Chitosan from Shrimp Shell Wastes. J. Bangladesh Agric. Univ. 2016, 14(2), 254–259. DOI: 10.3329/jbau.v14i2.32701.
  • Al Hoqani, H. A. S.; Al Shaqsi, N. H. K.; Hossin, M. A.; Al Sibani, M. A. Structural Characterization of Polymeric Chitosan and Mineral from Omani Shrimp Shells. Water Energy Nexus. 2021, 4(2021), 199–207. DOI: 10.1016/j.wen.2021.11.002.
  • Messina, C. M.; Manuguerra, S.; Arena, R.; Renda, G.; Ficano, G.; Randazzo, M.; Fricano, S.; Sadok, S.; Santulli, A. In vitro Bioactivity of Astaxanthin and Peptides from Hydrolisates of Shrimp (Parapenaeus longirostris) By-Products: From the Extraction Process to Biological Effect Evaluation, as Pilot Actions for the Strategy “From Waste to Profit”. Mar. Drugs. 2021, 19(4), 216. DOI: 10.3390/md19040216.
  • Vázquez, J. A.; Ramos, P.; Mirón, J.; Valcarcel, J.; Sotelo, C. G.; Pérez-Martín, R. I. Production of Chitin from Penaeus Vannamei By-Products to Pilot Plant Scale Using a Combination of Enzymatic and Chemical Processes and Subsequent Optimization of the Chemical Production of Chitosan by Response Surface Methodology. Mar. Drugs. 2017, 15(6), 180. DOI: 10.3390/md15060180.
  • Núñez-Gastélum, J. A.; Sánchez-Machado, D. I.; López-Cervantes, J.; Rodríguez-Núñez, J. R.; Correa-Murrieta, M. A.; Sánchez-Duarte, R. G.; Campas-Baypoli, O. N. Astaxanthin and Its Esters in Pigmented Oil from Fermented Shrimp By-Products. J. Aquat. Food Prod. Technol. 2016, 25(3), 334–343. DOI: 10.1080/10498850.2013.851756.
  • Sinthusamran, S.; Benjakul, S.; Kijroongrojana, K.; Prodpran, T.; Agustini, T. W. Yield and Chemical Composition of Lipids Extracted from Solid Residues of Protein Hydrolysis of Pacific White Shrimp Cephalothorax Using Ultrasound-Assisted Extraction. Food Biosci. 2018, 26(2018), 169–176. DOI: 10.1016/j.fbio.2018.10.009.
  • Gulzar, S.; Benjakul, S. Impact of Pretreatment and Atmosphere on Quality of Lipids Extracted from Cephalothorax of Pacific White Shrimp by Ultrasonic Assisted Process. Food Chem. 2020, 309(2020), 125732. DOI: 10.1016/j.foodchem.2019.125732.
  • Gómez-Estaca, J.; Montero, P.; Fernández-Martín, F.; Calvo, M. M.; Gómez-Guillén, M. C. The Effect of High-Pressure Treatment on Functional Components of Shrimp (Litopenaeus vannamei) Cephalothorax. Innov. Food Sci. Emerg. Technol. 2016, 34(2016), 154–160. DOI: 10.1016/j.ifset.2016.01.017.
  • Pereira, N. D. L. Á.; Fangio, M. F.; Rodriguez, Y. E.; Bonadero, M. C.; Harán, N. S.; Fernández-Gimenez, A. V. Characterization of Liquid Protein Hydrolysates Shrimp Industry Waste: Analysis of Antioxidant and Microbiological Activity, and Shelf Life of Final Product. J. Food Process Preserv. 2021, 46(8), 15526. DOI: 10.1111/jfpp.15526.
  • Ambigaipalan, P.; Shahidi, F. Bioactive Peptides from Shrimp Shell Processing Discards: Antioxidant and Biological Activities. J. Funct. Foods. 2017, 34(2017), 7–17. DOI: 10.1016/j.jff.2017.04.013.
  • Krichen, F.; Sila, A.; Caron, J.; Kobbi, S.; Nedjar, N.; Miled, N.; Blecker, C.; Besbes, S.; Bougatef, A. Identification and Molecular Docking of Novel Ace Inhibitory Peptides from Protein Hydrolysates of Shrimp Waste. Eng. Life Sci. 2018, 18(9), 682–691. DOI: 10.1002/elsc.201800045.
  • Kim, S. B.; Yoon, N. Y.; Shim, K. B.; Lim, C. W. Antioxidant and Angiotensin I-Converting Enzyme Inhibitory Activities of Northern Shrimp (Pandalus borealis) By-Products Hydrolysate by Enzymatic Hydrolysis. Fish. Aquat. Sci. 2016, 19(3), 1–6. DOI: 10.1186/s41240-016-0028-6.
  • Widyastuti, W.; Setiawan, F.; Al Afandy, C.; Irawan, A.; Laila, A.; Juliasih, N. L. G. R.; Setiawan, W. A.; Arai, M.; Hendri, J.; Setiawan, A. Antifungal Agent Chitooligosaccharides Derived from Solid-State Fermentation of Shrimp Shell Waste by Pseudonocardia antitumoralis 18D36-A1. Fermentation. 2022, 8(8), 353. DOI: 10.3390/fermentation8080353.
  • Nguyen, V. B.; Wang, S. L.; Nguyen, A. D.; Phan, T. Q.; Techato, K.; Pradit, S. Bioproduction of Prodigiosin from Fishery Processing Waste Shrimp Heads and Evaluation of Its Potential Bioactivities. Fishes. 2021, 6(3), 30. DOI: 10.3390/fishes6030030.
  • Dmytrów, I.; Szymczak, M.; Szkolnicka, K.; Kamiński, P. Development of Functional Acid Curd Cheese (Tvarog) with Antioxidant Activity Containing Astaxanthin from Shrimp Shells Preliminary Experiment. Foods. 2021, 10(4), 895. DOI: 10.3390/foods10040895.
  • Ding, S.; Wang, Y.; Li, J.; Chen, S. Progress and Prospects in Chitosan Derivatives: Modification Strategies and Medical Applications. J. Mater. Sci. Technol. 2021, 89(2021), 209–224. DOI: 10.1016/j.jmst.2020.12.008.
  • Sedaghat, F.; Yousefzadi, M.; Toiserkani, H.; Najafipour, S. Bioconversion of Shrimp Waste Penaeus Merguiensis Using Lactic Acid Fermentation: An Alternative Procedure for Chemical Extraction of Chitin and Chitosan. Int. J. Biol. Macromol. 2017, 104(2017), 883–888. DOI: 10.1016/j.ijbiomac.2017.06.099.
  • Sayari, N.; Martinez-Alvarez, O.; Mansour, M. B.; Sila, A.; Mokni, A.; Besbes, S.; Bougatef, A.; Balti, R. Structural Characteristics and Biological Activities of Sulfated Glycosaminoglycans Extracted from Shrimp By-Products. J. Food Biochem. 2018, 42(6), e12647. DOI: 10.1111/jfbc.12647.
  • Irna, C.; Jaswir, I.; Othman, R.; Jimat, D. N. Comparison Between High-Pressure Processing and Chemical Extraction: Astaxanthin Yield from Six Species of Shrimp Carapace. J. Diet. Suppl. 2018, 15(6), 805–813. DOI: 10.1080/19390211.2017.1387885.
  • Yuan, G.; Li, W.; Pan, Y.; Wang, C.; Chen, H. Shrimp Shell Wastes: Optimization of Peptide Hydrolysis and Peptide Inhibition of α-Amylase. Food Biosci. 2018, 25(2018), 52–60. DOI: 10.1016/j.fbio.2018.07.008.
  • Li, J.; Sun, W.; Ramaswamy, H. S.; Yu, Y.; Zhu, S.; Wang, J.; Li, H. High Pressure Extraction of Astaxanthin from Shrimp Waste (Penaeus Vannamei Boone): Effect on Yield and Antioxidant Activity. J. Food Process Eng. 2017, 40(2), e12353. DOI: 10.1111/jfpe.12353.
  • Qamar, A. Y.; Fang, X.; Bang, S.; Shin, S. T.; Cho, J. The Effect of Astaxanthin Supplementation on the Post-Thaw Quality of Dog Semen. Reprod. Domest. Anim. 2020, 55(9), 1163–1171. DOI: 10.1111/rda.13758.
  • Leite, M. F.; Lima, A. M.; Otton, R. Combination of Astaxanthin and Fish Oil Supplementation Alters Antioxidant Enzyme Profile of Dental Pulp Tissue. Int. Endod. J. 2012, 45(12), 1109–1115. DOI: 10.1111/j.1365-2591.2012.02080.x.
  • Sadighara, P.; Hariri, F.; Kazemi, V. Extraction of Shrimp Waste Oil and Its Fortification with Shrimp Waste Pigments. J. Food Saf. Hyg. 2015, 1(2), 69–71.
  • Abo Elnaga, N. I. E.; Massoud, M. I.; El-Razek, A.; Amal, M.; Nasser, E. A.; Elgazzar, A. Effect of the Diets Supplemented with Artichoke and Shrimp By-Products on Obese Rats. Alexandria Sci. Exch. J. 2021, 42(2), 351–363. DOI: 10.21608/asejaiqjsae.2021.169609.
  • Nguyen, V. B.; Wang, S. L. Production of Potent Antidiabetic Compounds from Shrimp Head Powder via Paenibacillus Conversion. Process Biochem. 2019, 76(2019), 18–24. DOI: 10.1016/j.procbio.2018.11.004.
  • Chen, J.; Yamada, S.; Hama, Y.; Shetty, A. K.; Kobayashi, T.; Oda, H.; Seiki, K.; Kim, E.; Kimura, T.; Takahashi, N., et al. Unique Heparan Sulfate from Shrimp Heads Exhibits a Strong Inhibitory Effect on Infections by Dengue Virus and Japanese Encephalitis Virus. Biochem. Biophys. Res. Commun. 2011, 412(1), 136–142.
  • Yeasmin, S.; Islam, M.; Nath, S.; Islam, S. Physical and Nutritional Qualities of Eggs and Meats Fed Shrimp Head Meal to Layer Chicken. Bangladesh J. Anim. Sci. 2021, 50(1), 12–21. DOI: 10.3329/bjas.v50i1.55560.
  • Gowsalya, T.; Kumar, J. S. S. Influence of Shrimp Head Meal Incorporated Diet on Growth and Maturation of Goldfish Carassius Auratus. Int. J. Fish. Aquat. Stud. 2018, 6(4), 1–7.
  • Islam, S.; Paul, C.; Islam, M. B. Substitution of Soybean Meal by Shrimp Head Meal (Penaeus Monodon) in Poultry Ration for the Performance of Growing Pullets. SAARC J. Agric. 2021, 18(2), 125–137. DOI: 10.3329/sja.v18i2.51114.
  • Manik, H.; Solin, M.; Thami, K.; Al Fajar, B. Fortification of Chitosan and Mangrove Flour as Windu Shrimp Feed (Penaeusmonodon) Against Infection White Spot Syndrome Virus. IOP Conf. Ser Mater. Sci. Eng. 2020, 725(1), 012071. DOI: 10.1088/1757-899X/725/1/012071.
  • Toomer, O. T.; Do, A. B.; Fu, T. J.; Williams, K. M. Digestibility and Immunoreactivity of Shrimp Extracts Using an in vitro Digestibility Model with Pepsin and Pancreatin. J. Food Sci. 2015, 80(7), T1633–T1639. DOI: 10.1111/1750-3841.12917.
  • Gunasekaran, J.; Kannuchamy, N.; Kannaiyan, S.; Chakraborti, R.; Gudipati, V. Protein Hydrolysates from Shrimp (Metapenaeus dobsoni) Head Waste: Optimization of Extraction Conditions by Response Surface Methodology. J. Aquat. Food Prod. Technol. 2015, 24(5), 429–442. DOI: 10.1080/10498850.2013.787134.
  • Messina, C. M.; Manuguerra, S.; Renda, G.; Santulli, A. Biotechnological Applications for the Sustainable Use of Marine By-Products: In vitro Antioxidant and Pro-Apoptotic Effects of Astaxanthin Extracted with Supercritical CO2 from Parapeneus Longirostris. Mar. Biotechnol. 2019, 21(4), 565–576. DOI: 10.1007/s10126-019-09904-y.
  • Sangsuriyawong, A.; Limpawattana, M.; Siriwan, D.; Klaypradit, W. Properties and Bioavailability Assessment of Shrimp Astaxanthin Loaded Liposomes. Food Sci. Biotechnol. 2019, 28(2), 529–537. DOI: 10.1007/s10068-018-0495-x.
  • Chintong, S.; Phatvej, W.; Rerk-Am, U.; Waiprib, Y.; Klaypradit, W. In vitro Antioxidant, Antityrosinase, and Cytotoxic Activities of Astaxanthin from Shrimp Waste. Antioxidants. 2019, 8(5), 1–11. DOI: 10.3390/antiox8050128.
  • Mccall, B.; Mcpartland, C. K.; Moore, R.; Frank-Kamenetskii, A.; Booth, B. Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells in vitro. Antioxidants (Basel). 2018, 7(10), 135. DOI: 10.3390/antiox7100135.
  • Priya, K.; Vijayakumar, M.; Janani, B. Chitosan-Mediated Synthesis of Biogenic Silver Nanoparticles (AgNps), Nanoparticle Characterisation and in vitro Assessment of Anticancer Activity in Human Hepatocellular Carcinoma HepG2 Cells. Int. J. Biol. Macromol. 2020, 149(2020), 844–852. DOI: 10.1016/j.ijbiomac.2020.02.007.
  • Kannan, A.; Hettiarachchy, N. S.; Marshall, M.; Raghavan, S.; Kristinsson, H. Shrimp Shell Peptide Hydrolysates Inhibit Human Cancer Cell Proliferation. J. Sci. Food Agric. 2011, 91(10), 1920–1924. DOI: 10.1002/jsfa.4464.
  • Cheikh, A.; Tabka, H.; Tlili, Y.; Santulli, A.; Bouzouaya, N.; Bouhaouala-Zahar, B.; Benkhalifa, R. Xenopus Oocyte’s Conductance for Bioactive Compounds Screening and Characterization. IJMS. 2019, 20(9), 2083. DOI: 10.3390/ijms20092083.
  • Dhinaut, J.; Balourdet, A.; Teixeira, M.; Chogne, M.; Moret, Y. A Dietary Carotenoid Reduces Immunopathology and Enhances Longevity Through an Immune Depressive Effect in an Insect Model. Nature. 2017, 7(1), 12429. DOI: 10.1038/s41598-017-12769-7.
  • Xie, S.; Yin, P.; Tian, L.; Yu, Y.; Liu, Y.; Niu, J. Dietary Supplementation of Astaxanthin Improved the Growth Performance, Antioxidant Ability and Immune Response of Juvenile Largemouth Bass (Micropterus salmoides) Fed High-Fat Diet. Mar. Drugs. 2020, 18(12), 642. DOI: 10.3390/md18120642.
  • Subramanian, K.; Sadaiappan, B.; Aruni, W.; Kumarappan, A.; Thirunavukarasu, R.; Srinivasan, G. P.; Bharathi, S.; Nainangu, P.; Renuga, P. S.; Elamaran, A., et al. Bioconversion of Chitin and Concomitant Production of Chitinase and N-Acetylglucosamine by Novel Achromobacter xylosoxidans Isolated from Shrimp Waste Disposal Area. Nature. 2020, 10(1), 11898.
  • Jiang, X.; Yao, W.; Yang, H.; Tan, S.; Leng, X.; Li, X. Dietary Effects of Clostridium Autoethanogenum Protein Substituting Fish Meal on Growth, Intestinal Histology and Immunity of Pacific White Shrimp (Litopenaeus vannamei) Based on Transcriptome Analysis. Fish Shellfish Immunol. 2021, 119(2021), 635–644. DOI: 10.1016/j.fsi.2021.10.005.
  • Fledderjohann, J.; Barnes, L. W. Reimagining Infertility: A Critical Examination of Fertility Norms, Geopolitics and Survey Bias. Health Policy Plan. 2018, 33(1), 34–40. DOI: 10.1093/heapol/czx148.
  • Comhaire, F. H.; El Garem, Y.; Mahmoud, A.; Eertmans, F.; Schoonjans, F. Combined Conventional/Antioxidant ‘Astaxanthin’ Treatment for Male Infertility: A Double Blind, Randomized Trial. Asian J. Androl. 2005, 7(3), 257–262. DOI: 10.1111/j.1745-7262.2005.00047.x.
  • Andrisani, A.; Donà, G.; Tibaldi, E.; Brunati, A.; Sabbadin, C.; Armanini, D.; Alvisi, G.; Gizzo, S.; Ambrosini, G.; Ragazzi, E., et al. Astaxanthin Improves Human Sperm Capacitation by Inducing Lyn Displacement and Activation. Mar. Drugs. 2015, 13(9), 5533–5551.
  • Saberi, E.; Mohammadrezaei, F. M.; Jazayeri, O.; Fathi, N.; Moghadam, A. H. Astaxanthin Induces the Expression of CatSper1 Gene and Protects Sperms in Toxicity Induced by Cadmium in Mice. Drug Res. (Stuttg). 2021, 71(9), 512–519. DOI: 10.1055/a-1553-3265.
  • Aneesh, P. A.; Anandan, R.; Kumar, L. R. G.; Ajeeshkumar, K. K.; Kumar, K. A.; Mathew, S. A Step to Shell Biorefinery—Extraction of Astaxanthin-Rich Oil, Protein, Chitin, and Chitosan from Shrimp Processing Waste. Biomass Conv. Bioref. 2020, 13(1), 205–214. DOI: 10.1007/s13399-020-01074-5.
  • Doan, C. T.; Tran, T. N.; Wang, C. L.; Wang, S. L. Microbial Conversion of Shrimp Heads to Proteases and Chitin as an Effective Dye Adsorbent. Polymers (Basel). 2020, 12(10), 2228. DOI: 10.3390/polym12102228.
  • Neves, A. C.; Zanette, C.; Grade, S. T.; Schaffer, J. V.; Alves, H. J.; Arantes, M. K. Optimization of Lactic Fermentation for Extraction of Chitin from Freshwater Shrimp Waste. Acta Sci. Technol. 2017, 39(2), 125–133. DOI: 10.4025/actascitechnol.v39i2.29370.
  • Mohammadi, P.; Taghavi, E.; Foong, S. Y.; Rajaei, A.; Amiri, H.; de Tender, C.; Peng, W.; Lam, S. S.; Aghbashlo, M.; Rastegari, H., et al. Comparison of Shrimp Waste-Derived Chitosan Produced Through Conventional and Microwave-Assisted Extraction Processes: Physicochemical Properties and Antibacterial Activity Assessment. Int. J. Biol. Macromol. 2023, 242(Pt 2), 124841.
  • Rasweefali, M. K.; Sabu, S.; Sunooj, K. V.; Sasidharan, A.; Xavier, K. A. M. Consequences of Chemical Deacetylation on Physicochemical, Structural and Functional Characteristics of Chitosan Extracted from Deep-Sea Mud Shrimp. Carbohydr. Polym. Technol. Appl. 2021, 2(2021), 100032. DOI: 10.1016/j.carpta.2020.100032.
  • Bassijeh, A.; Ansari, S.; Hosseini, S. M. H. Astaxanthin Encapsulation in Multilayer Emulsions Stabilized by Complex Coacervates of Whey Protein Isolate and Persian Gum and Its Use as a Natural Colorant in a Model Beverage. Food. Res. Int. 2020, 137(2020), 109689. DOI: 10.1016/j.foodres.2020.109689.
  • Taksima, T.; Chonpathompikunlert, P.; Sroyraya, M.; Hutamekalin, P.; Limpawattana, M.; Klaypradit, W. Effects of Astaxanthin from Shrimp Shell on Oxidative Stress and Behavior in Animal Model of Alzheimer’s Disease. Mar. Drugs. 2019, 17(11), 628. DOI: 10.3390/md17110628.
  • Karnila, R.; Hasan, B.; Ilza, M.; Leksono, T.; Ahmad, M. A. Astaxanthin Extraction of Vanname Shrimp (Litopenaeus vannamei) Using Palm Oil. IOP Conf. Ser. Earth Environ. Sci. 2021, 695(1), 012056. DOI: 10.1088/1755-1315/695/1/012056.
  • Dave, D.; Liu, Y.; Pohling, J.; Trenholm, S.; Murphy, W. Astaxanthin Recovery from Atlantic Shrimp (Pandalus borealis) Processing Materials. Bioresour. Technol. Rep. 2020, 11(2020), 100535. DOI: 10.1016/j.biteb.2020.100535.
  • Yu, Z. L.; Li, D. Y.; Yin, F. W. Lipid Profiles in By-Products and Muscles of Three Shrimp Species (Penaeus monodon, Penaeus vannamei, and Penaeus chinensis). Eur. J. Lipid Sci. Technol. 2020, 122(7), 1900309. DOI: 10.1002/ejlt.201900309.
  • Vieira, M. A.; Oliveira, D. D.; Kurozawa, L. E. Production of Peptides with Radical Scavenging Activity and Recovery of Total Carotenoids Using Enzymatic Protein Hydrolysis of Shrimp Waste. J. Food Biochem. 2016, 40(4), 517–525. DOI: 10.1111/jfbc.12246.
  • Yang, Y.; Yazdani, L.; Aghbashlo, M.; Gupta, V. K.; Pan, J.; Tabatabaei, M.; Rajaei, A. Product Diversification to Boost the Sustainability of the Shrimp Processing Industry: The Case of Shrimp-Waste Driven Chitosan-Based Food Pickering Emulsion Stabilizers. J. Cleaner Prod. 2023, 425(2023), 138958. DOI: 10.1016/j.jclepro.2023.138958.
  • Kumar, R.; Xavier, K. A. M.; Lekshmi, M.; Balange, A.; Gudipati, V. Fortification of Extruded Snacks with Chitosan: Effects on Techno Functional and Sensory Quality. Carbohydr. Polym. 2018, 194(2018), 267–273. DOI: 10.1016/j.carbpol.2018.04.050.
  • Kumar, R.; Xavier, K. M.; Lekshmi, M.; Dhanabalan, V.; Thachil, M. T.; Balange, A. K.; Gudipati, V. Development of Functional Extruded Snacks by Utilizing Paste Shrimp (Acetes spp.): Process Optimization and Quality Evaluation. J. Sci. Food Agric. 2018, 98(6), 2393–2401. DOI: 10.1002/jsfa.8731.
  • Takeungwongtrakul, S.; Benjakul, S.; H-Kittikun, A. Characteristics and Oxidative Stability of Bread Fortified with Encapsulated Shrimp Oil. Ital. J. Food Sci. 2015, 27(4), 476–486. DOI: 10.14674/1120-1770/ijfs.v380.
  • Takeungwongtrakul, S.; Benjakul, S. Biscuits Fortified with Micro-Encapsulated Shrimp Oil: Characteristics and Storage Stability. J. Food Sci. Technol. 2017, 54(5), 1126–1136. DOI: 10.1007/s13197-017-2545-4.
  • Verhaeghe, T.; Van, P. C.; Vlaemynck, G.; De, B. J.; Hendrickx, M. Kinetics of Drosopterin Release as Indicator Pigment for Heat-Induced Color Changes of Brown Shrimp (Crangon Crangon). Food Chem. 2018, 254(2018), 359–366. DOI: 10.1016/j.foodchem.2018.01.195.
  • Liu, Y.; Xiao, Y.; Shang, M.; Zhuang, Y.; Wang, L. Smart Fluorescent Tag Based on Amine Response for Non-Contact and Visual Monitoring of Seafood Freshness. Chem. Eng. J. 2022, 428(6), 132647. DOI: 10.1016/j.cej.2021.132647.
  • Raju, N.; Gulzar, S.; Benjakul, S. Cholesterol Lowered Shrimp Lipid Loaded Liposome Stabilised by Pectin/Glycerol and Its Fortification in Peach Tea Drink. Int. J. Food Sci. Technol. 2021, 57(3), 1563–1572. DOI: 10.1111/ijfs.15517.
  • Nguyen, N. V.; Hai, P. D.; My My, V. T.; Men, D. T.; Trung, L. D.; Bavor, H. J. Improving Product Added-Value from Shrimp (Litopenaeus vannamei) Waste by Using Enzymatic Hydrolysis and Response Surface Methodology. J. Aquat. Food Prod. Technol. 2021, 30(7), 1–13. DOI: 10.1080/10498850.2021.1949770.
  • Gulzar, S.; Benjakul, S. Impact of Pulsed Electric Field Pretreatment on Yield and Quality of Lipid Extracted from Cephalothorax of Pacific White Shrimp (Litopenaeus vannamei) by Ultrasound-Assisted Process. Int. J. Food Sci. Technol. 2020, 55(2), 619–630. DOI: 10.1111/ijfs.14316.
  • Taksima, T.; Limpawattana, M.; Klaypradit, W. Astaxanthin Encapsulated in Beads Using Ultrasonic Atomizer and Application in Yogurt as Evaluated by Consumer Sensory Profile. LWT - Food Sci. Technol. 2015, 62(1), 431–437. DOI: 10.1016/j.lwt.2015.01.011.
  • Gulzar, S.; Benjakul, S. Fortification of Skim Milk with Nanoliposomes Loaded with Shrimp Oil: Properties and Storage Stability. J. Am. Oil Chem. Soc. 2020, 97(8), 929–940. DOI: 10.1002/aocs.12371.
  • Pereira, N. D. L. A.; Fernández-Gimenez, A. V. Exogenous Enzymes in Dairy Technology: Acidic Proteases from Processing Discards of Shrimp Pleoticus Muelleri and Their Use as Milk-Clotting Enzymes for Cheese Manufacture. Int. J. Food Sci. Technol. 2017, 52(2), 341–347. DOI: 10.1111/ijfs.13285.
  • Gomez-Estaca, J.; Comunian, T. A.; Montero, P.; Favaro-Trindade, C. S. Physico-Chemical Properties, Stability, and Potential Food Applications of Shrimp Lipid Extract Encapsulated by Complex Coacervation. Food Bioprocess Technol. 2018, 11(8), 1596–1604. DOI: 10.1007/s11947-018-2116-3.
  • Muniz, G. L.; Borges, A. C.; Cristina, T.; Batista, R. O.; Castro, S. R. D. Chemically Enhanced Primary Treatment of Dairy Wastewater Using Chitosan Obtained from Shrimp Wastes: Optimization Using a Doehlert Matrix Design. Environ. Technol. 2020, 43(2), 237–254. DOI: 10.1080/09593330.2020.1783372.
  • Gulzar, S.; Raju, N.; Prodpran, T.; Benjakul, S. Chitosan-Tripolyphosphate Nanoparticles Improves Oxidative Stability of Encapsulated Shrimp Oil Throughout the Extended Storage. Eur. J. Lipid Sci. Technol. 2022, 124(1), 2100178. DOI: 10.1002/ejlt.202100178.
  • Guzzon, R.; Nardin, T.; Larcher, R. The Controversial Relationship Between Chitosan and the Microorganisms Involved in the Production of Fermented Beverages. Eur. Food Res. Technol. 2022, 248(3), 751–765. DOI: 10.1007/s00217-021-03919-3.
  • Xu, J.; Wei, R.; Jia, Z.; Song, R. Characteristics and Bioactive Functions of Chitosan/gelatin-Based Film Incorporated with ε-Polylysine and Astaxanthin Extracts Derived from By-Products of Shrimp (Litopenaeus vannamei). Food Hydrocoll. 2020, 100(2020), 105436. DOI: 10.1016/j.foodhyd.2019.105436.
  • Piotrowska-Kirschling, A.; Szelągowska-Rudzka, K.; Karczewski, J.; Brzeska, J. Application of Shrimp Waste for the Synthesis of Polyurethane-Chitosan Materials with Potential Use in Sorption of Oil Micro-Spills in Water Treatment. Sustainability. 2021, 13(9), 5098. DOI: 10.3390/su13095098.
  • Yang, L.; Zhang, A.; Zheng, X. Shrimp Shell Catalyst for Biodiesel Production. Energy. Fuels. 2009, 23(11), 3859–3865. DOI: 10.1021/ef900273y.
  • Doan, C.; Tran, T. N.; Wen, I. H.; Nguyen, N. V.; Nguyen, A. D.; Wang, S. L. Conversion of Shrimp Head Waste for Production of a Thermotolerant, Detergent-Stable, Alkaline Protease by Paenibacillus Sp. Catalysts. 2019, 9(10), 798. DOI: 10.3390/catal9100798.
  • Dasumiati, S. N.; Malik, M. Food Packaging Development of Bioplastic from Basic Waste of Cassava Peel (Manihot uttilisima) and Shrimp Shell. IOP Conf. Ser. Mater. Sci. Eng. 2019, 602(1), 012053. DOI: 10.1088/1757-899X/602/1/012053.
  • Kaewtatip, K.; Chiarathanakrit, C.; Riyajan, S. A. The Effects of Egg Shell and Shrimp Shell on the Properties of Baked Starch Foam. Powder Technol. 2018, 335(1), 354–359. DOI: 10.1016/j.powtec.2018.05.030.
  • Al Hoqani, H. A. S.; Al-Shaqsi, N.; Hossain, M. A.; Al Sibani, M. A. Isolation and Optimization of the Method for Industrial Production of Chitin and Chitosan from Omani Shrimp Shell. Carbohydr. Res. 2020, 492(2020), 108001. DOI: 10.1016/j.carres.2020.108001.
  • Prameela, K.; Venkatesh, K.; Immandi, S. B.; Kasturi, A. P. K.; Rama Krishna, C.; Murali Mohan, C. Next Generation Nutraceutical from Shrimp Waste: The Convergence of Applications with Extraction Methods. Food Chem. 2017, 237(2017), 121–132. DOI: 10.1016/j.foodchem.2017.05.097.
  • Raju, N.; Benjakul, S. Application of Saponin for Cholesterol Removal from Pacific White Shrimp (Litopenaeus vannamei) Lipid. Eur. J. Lipid Sci. Technol. 2020, 122(8), 2000078. DOI: 10.1002/ejlt.202000078.
  • Gulzar, S.; Nilsuwan, K.; Raju, N.; Benjakul, S. Whole Wheat Crackers Fortified with Mixed Shrimp Oil and Tea Seed Oil Microcapsules Prepared from Mung Bean Protein Isolate and Sodium Alginate. Foods. 2022, 11(2), 202. DOI: 10.3390/foods11020202.
  • Feng, S.; Limwachiranon, J.; Luo, Z.; Shi, X.; Ru, Q. Preparation and Purification of Angiotensin-Converting Enzyme Inhibitory Peptides from Hydrolysate of Shrimp (Litopenaeus vannamei) Shell Waste. Int. J. Food Sci. Technol. 2016, 51(7), 1610–1617. DOI: 10.1111/ijfs.13131.
  • Lee, C.; Kim, S.; Lim, S. J.; Lee, K. J. Supplemental Effects of Biofloc Powder on Growth Performance, Innate Immunity, and Disease Resistance of Pacific White Shrimp Litopenaeus Vannamei. Fish. Aquat. Sci. 2017, 20(15), 1–7. DOI: 10.1186/s41240-017-0059-7.
  • Esfandabadi, Z. S.; Ranjbari, M.; Scagnelli, S. D. The Imbalance of Food and Biofuel Markets Amid Ukraine-Russia Crisis: A Systems Thinking Perspective. Biofuel Res. J. 2022, 9(2), 1640–1647. DOI: 10.18331/BRJ2022.9.2.5.
  • Gheewala, S. H. Life Cycle Assessment for Sustainability Assessment of Biofuels and Bioproducts. Biofuel Res. J. 2023, 10(1), 1810–1815. DOI: 10.18331/BRJ2023.10.1.5.