733
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison of ANN and ANFIS modeling for predicting drying kinetics of Stevia rebaudiana leaves in a hot-air dryer and characterization of dried powder

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3356-3375 | Received 18 Sep 2023, Accepted 09 Nov 2023, Published online: 27 Nov 2023

References

  • Bakhshipour, A.; Zareiforoush, H.; Bagheri, I. Mathematical and Intelligent Modeling of Stevia (Stevia Rebaudiana) Leaves Drying in an Infrared-Assisted Continuous Hybrid Solar Dryer. Food Sci. & Nutrition. 2021, 9(1), 532–543. DOI: 10.1002/FSN3.2022.
  • Kalsi, B. S.; Singh, S.; Alam, M. S.; Bhatia, S. Microwave Drying Modelling of Stevia Rebaudiana Leaves Using Artificial Neural Network and Its Effect on Color and Biochemical Attributes. J. Food Qual. 2023, 2023, 1–12. DOI: 10.1155/2023/2811491.
  • Castillo Téllez, M.; Pilatowsky Figueroa, I.; Castillo Téllez, B.; López Vidaña, E. C.; López Ortiz, A. Solar Drying of Stevia (Rebaudiana Bertoni) Leaves Using Direct and Indirect Technologies. Solar Energy. 2018, 159, 898–907. DOI: 10.1016/J.SOLENER.2017.11.031.
  • Hidar, N.; Ouhammou, M.; Mghazli, S.; Idlimam, A.; Hajjaj, A.; Bouchdoug, M.; Jaouad, A.; Mahrouz, M. The Impact of Solar Convective Drying on Kinetics, Bioactive Compounds and Microstructure of Stevia Leaves. Renewable Energy. 2020, 161, 1176–1183. DOI: 10.1016/J.RENENE.2020.07.124.
  • Khodja, Y. K.; Dahmoune, F.; Bey, M. B.; Madani, K.; Khettal, B. Conventional Method and Microwave Drying Kinetics of Laurus Nobilis Leaves: Effects on Phenolic Compounds and Antioxidant Activity. Braz. J. Food Technol. 2020, 23. DOI: 10.1590/1981-6723.21419.
  • Hashim, N.; Daniel, O.; Rahaman, E. A Preliminary Study: Kinetic Model of Drying Process of Pumpkins (Cucurbita Moschata) in a Convective Hot Air Dryer. Agric. Agric. Sci. Procedia. 2014, 2, 345–352. DOI: 10.1016/J.AASPRO.2014.11.048.
  • Demiray, E.; Tulek, Y. Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat & Mass. Trans. /waerme- Und Stoffuebertragung. 2014, 50(6), 779–786. DOI: 10.1007/s00231-013-1286-9.
  • Sahoo, M.; Titikshya, S.; Aradwad, P.; Kumar, V.; Naik, S. N. Study of the Drying Behaviour and Color Kinetics of Convective Drying of Yam (Dioscorea Hispida) Slices. Ind. Crops. Prod. 2022, 176, 176 114258. DOI: 10.1016/j.indcrop.2021.114258.
  • Chen, X.; Li, X.; Mao, X.; Huang, H.; Wang, T.; Qu, Z.; Miao, J.; Gao, W. Effects of Drying Processes on Starch-Related Physicochemical Properties, Bioactive Components and Antioxidant Properties of Yam Flours. Food Chem. 2017, 224, 224–232. DOI: 10.1016/J.FOODCHEM.2016.12.028.
  • Alara, O. R.; Abdurahman, N. H.; Olalere, O. A. Mathematical Modelling and Morphological Properties of Thin Layer Oven Drying of Vernonia Amygdalina Leaves. J. Saudi Soc. Agric. Sci. 2019, 18(3), 309–315. DOI: 10.1016/j.jssas.2017.09.003.
  • Tzempelikos, D. A.; Mitrakos, D.; Vouros, A. P.; Bardakas, A. V.; Filios, A. E.; Margaris, D. P. Numerical Modeling of Heat and Mass Transfer During Convective Drying of Cylindrical Quince Slices. J. Food Eng. 2015, 156, 10–21. DOI: 10.1016/j.jfoodeng.2015.01.017.
  • Abbaspour‐Gilandeh, Y.; Jahanbakhshi, A.; Kaveh, M. Prediction Kinetic, Energy and Exergy of Quince Under Hot Air Dryer Using ANNs and ANFIS. Food Sci. & Nutri. 2020, 8(1), 594–611. DOI: 10.1002/fsn3.1347.
  • Okonkwo, C. E.; Olaniran, A. F.; Adeyi, A. J.; Adeyi, O.; Ojediran, J. O.; Erinle, O. C.; Mary, I. Y.; Taiwo, A. E. Neural Network and Adaptive Neuro‐Fuzzy Inference System Modeling of the Hot Air‐Drying Process of Orange‐Fleshed Sweet Potato. J. Food Proc. Preserv. 2022, 46(3). DOI: 10.1111/jfpp.16312.
  • Kaveh, M.; Rasooli Sharabiani, V.; Amiri Chayjan, R.; Taghinezhad, E.; Abbaspour-Gilandeh, Y.; Golpour, I. ANFIS and ANNs Model for Prediction of Moisture Diffusivity and Specific Energy Consumption Potato, Garlic and Cantaloupe Drying Under Convective Hot Air Dryer. Info. Process. Agric. 2018, 5(3), 372–387. DOI: 10.1016/j.inpa.2018.05.003.
  • Lemus-Mondaca, R.; Ah-Hen, K.; Vega-Gálvez, A.; Honores, C.; Moraga, N. O. Stevia Rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners. Plant. Foods. Human. Nutr. 2016, 71(1), 49–56. DOI: 10.1007/s11130-015-0524-3.
  • Lemus-Mondaca, R.; Vega-Gálvez, A.; Rojas, P.; Stucken, K.; Delporte, C.; Valenzuela-Barra, G.; Jagus, R. J.; Agüero, M. V.; Pasten, A. Antioxidant, Antimicrobial and Anti-Inflammatory Potential of Stevia Rebaudiana Leaves: Effect of Different Drying Methods. J. Appl. Res. Med. Aromat. Plants. 2018, 11, 37–46. DOI: 10.1016/j.jarmap.2018.10.003.
  • Lemus-Mondaca, R.; Zura-Bravo, L.; Ah-Hen, K.; Di Scala, K. Effect of Drying Methods on Drying Kinetics, Energy Features, Thermophysical and Microstructural Properties of Stevia Rebaudiana Leaves. J. Sci. Food Agric. 2021, 101(15), 6484–6495. DOI: 10.1002/JSFA.11320.
  • AOAC. Official Methods of Analysis of AOAC International -20th Edition, 2016, 20th Ed;AOAC: Gaithersburg, 2016; p. 3172.
  • Mahmood, N.; Liu, Y.; Munir, Z.; Zhang, Y.; Niazi, B. M. K. Effects of Hot Air Assisted Radio Frequency Drying on Heating Uniformity, Drying Characteristics and Quality of Paddy. LWT. 2022, 158, 113131. DOI: 10.1016/j.lwt.2022.113131.
  • Zhang, P.; Fang, D.; Pei, F.; Wang, C.; Jiang, W.; Hu, Q.; Ma, N. Nanocomposite Packaging Materials Delay the Browning of Agaricus Bisporus by Modulating the Melanin Pathway. Postharvest. Biol. Technol. 2022, 192, 112014. DOI: 10.1016/J.POSTHARVBIO.2022.112014.
  • Mouhoubi, K.; Boulekbache-Makhlouf, L.; Mehaba, W.; Himed-Idir, H.; Madani, K. Convective and Microwave Drying of Coriander Leaves: Kinetics Characteristics and Modeling, Phenolic Contents, Antioxidant Activity, and Principal Component Analysis. J. Food Process Eng. 2022, 45(1), e13932. DOI: 10.1111/JFPE.13932.
  • Sharabiani, V. R.; Kaveh, M.; Taghinezhad, E.; Abbaszadeh, R.; Khalife, E.; Szymanek, M.; Dziwulska-Hunek, A. Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls. Appl. Sci. 2022, 12(4), 1771. DOI: 10.3390/app12041771.
  • Kaveh, M.; Abbaspour-Gilandeh, Y.; Chen, G. Drying Kinetic, Quality, Energy and Exergy Performance of Hot Air-Rotary Drum Drying of Green Peas Using Adaptive Neuro-Fuzzy Inference System. Food Bioprod. Process. 2020, 124, 168–183. DOI: 10.1016/j.fbp.2020.08.011.
  • Kalsi, B. S.; Singh, S.; Alam, M. S.; Bhatia, S. Application of Thermosonication for Guava Juice Processing: Impacts on Bioactive, Microbial, Enzymatic and Quality Attributes. Ultrason. Sonochem. 2023, 99, 106595. DOI: 10.1016/j.ultsonch.2023.106595.
  • Zalpouri, R.; Singh, M.; Kaur, P.; Kaur, A.; Gaikwad, K. K.; Singh, A. Drying Kinetics, Physicochemical and Thermal Analysis of Onion Puree Dried Using a Refractance Window Dryer. Processes. 2023, 11(3), 700. DOI: 10.3390/pr11030700.
  • Xu, W.; Sun, H.; Li, H.; Li, Z.; Zheng, S.; Luo, D.; Ning, Y.; Wang, Y.; Shah, B. R. Preparation and Characterization of Tea Oil Powder with High Water Solubility Using Pickering Emulsion Template and Vacuum Freeze-Drying. LWT. 2022, 160, 113330. DOI: 10.1016/j.lwt.2022.113330.
  • Bakshi, G.; Ananthanarayan, L. Characterization of Lemon Peel Powder and Its Application as a Source of Pectin Degrading Enzyme in Clarification of Cloudy Apple Juice. J. Food Sci. Technol. 2022, 59(7), 2535–2544. DOI: 10.1007/s13197-021-05270-7.
  • Padhi, S.; Dwivedi, M. Physico-Chemical, Structural, Functional and Powder Flow Properties of Unripe Green Banana Flour After the Application of Refractance Window Drying. Fut. Foods. 2022, 5, 100101. DOI: 10.1016/j.fufo.2021.100101.
  • Camacho, M. M.; Silva-Espinoza, M. A.; Martínez-Navarrete, N. Flowability, Rehydration Behaviour and Bioactive Compounds of an Orange Powder Product as Affected by Particle Size. Food Bioprocess. Technol. 2022, 15(3), 683–692. DOI: 10.1007/s11947-022-02773-9.
  • Luka, B. S.; Vihikwagh, Q. M.; Ngabea, S. A.; Mactony, M. J.; Zakka, R.; Yuguda, T. K.; Adnouni, M. Convective and Microwave Drying Kinetics of White Cabbage (Brassica Oleracae Var Capitata L.): Mathematical Modelling, Thermodynamic Properties, Energy Consumption and Reconstitution Kinetics. J. Agric. Food. Res. 2023, 12, 100605. DOI: 10.1016/j.jafr.2023.100605.
  • Ghnimi, T.; Hassini, L.; Bagane, M. Experimental Study of Water Desorption Isotherms and Thin-Layer Convective Drying Kinetics of Bay Laurel Leaves. Heat Mass Transfer. 2016, 52(12), 2649–2659. DOI: 10.1007/s00231-016-1770-0.
  • Ben Haj Said, L.; Najjaa, H.; Farhat, A.; Neffati, M.; Bellagha, S. Thin Layer Convective Air Drying of Wild Edible Plant (Allium Roseum) Leaves: Experimental Kinetics, Modeling and Quality. J. Food Sci. Technol. 2015, 52, 3739–3749. DOI: 10.1007/s13197-014-1435-2.
  • Stępień, A. E.; Gorzelany, J.; Matłok, N.; Lech, K.; Figiel, A. The Effect of Drying Methods on the Energy Consumption, Bioactive Potential and Colour of Dried Leaves of Pink Rock Rose (Cistus Creticus). J. Food Sci. Technol. 2019, 56(5), 2386–2394. DOI: 10.1007/s13197-019-03656-2.
  • Ali, A.; Oon, C. C.; Chua, B. L.; Figiel, A.; Chong, C. H.; Wojdylo, A.; Turkiewicz, I. P.; Szumny, A.; Łyczko, J. Volatile and Polyphenol Composition, Anti-Oxidant, Anti-Diabetic and Anti-Aging Properties, and Drying Kinetics as Affected by Convective and Hybrid Vacuum Microwave Drying of Rosmarinus Officinalis L. Ind. Crops Prod. 2020, 151, 112463. DOI: 10.1016/j.indcrop.2020.112463.
  • Kouhila, M.; Moussaoui, H.; Lamsyehe, H.; Tagnamas, Z.; Bahammou, Y.; Idlimam, A.; Lamharrar, A. Drying Characteristics and Kinetics Solar Drying of Mediterranean Mussel (Mytilus Galloprovincilis) Type Under Forced Convection. Renewable Energy. 2020, 147, 833–844. DOI: 10.1016/J.RENENE.2019.09.055.
  • Miraei Ashtiani, S.-H.; Salarikia, A.; Golzarian, M. R. Analyzing Drying Characteristics and Modeling of Thin Layers of Peppermint Leaves Under Hot-Air and Infrared Treatments. Information Process. Agric. 2017, 4(2), 128–139. DOI: 10.1016/j.inpa.2017.03.001.
  • Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying Kinetics and Quality Attributes of Jujube (Zizyphus Jujuba Miller) Slices Dried by Hot-Air and Short- and Medium-Wave Infrared Radiation. LWT - Food Sci. Technol. 2015, 64(2), 759–766. DOI: 10.1016/J.LWT.2015.06.071.
  • Kaveh, M.; Jahanbakhshi, A.; Abbaspour-Gilandeh, Y.; Taghinezhad, E.; Moghimi, M. B. F. The Effect of Ultrasound Pre-Treatment on Quality, Drying, and Thermodynamic Attributes of Almond Kernel Under Convective Dryer Using ANNs and ANFIS Network. J. Food Process Eng. 2018, 41(7), e12868. DOI: 10.1111/jfpe.12868.
  • Srikanth, K. S.; Sharanagat, V. S.; Kumar, Y.; Bhadra, R.; Singh, L.; Nema, P. K.; Kumar, V. Convective Drying and Quality Attributes of Elephant Foot Yam (Amorphophallus Paeoniifolius). LWT. 2019, 99, 8–16. DOI: 10.1016/j.lwt.2018.09.049.
  • Lule, F.; Koyuncu, T. Convective and Microwave Drying Characteristics, Energy Requirement and Color Retention of Dehydrated Nettle Leaves (Urtica Diocia L.). Legume Res. Intern. J. 2017, 40(4), 649–654. DOI: 10.18805/lr.v0i0.8409.
  • Ek, P.; Araujo, A. C.; Oliveira, S. M.; Ramos, I. N.; Brandao, T. R.; Silva, C. L. Assessment of Nutritional Quality and Color Parameters of Convective Dried Watercress (Nasturtium officinale). J. Food Process. Preserv. 2018, 42(2), e13459. DOI: 10.1111/jfpp.13459.
  • Youssef, K. M.; Mokhtar, S. M. Effect of Drying Methods on the Antioxidant Capacity, Color and Phytochemicals of Portulaca oleracea L. Leaves. J. Nutr. Food. Sci. 2014, 4(6), 322. DOI: 10.4172/2155-9600.1000322.
  • Demiray, E.; Tulek, Y. Color Degradation Kinetics of Carrot (D Aucus Carota L.) Slices During Hot Air Drying. J. Food Process. Preserv. 2015, 39(6), 800–805. DOI: 10.1111/jfpp.12290.
  • Kalsi, B. S.; Singh, S.; Alam, M. S. Influence of Ultrasound Processing on the Quality of Guava Juice. J. Food Process Eng. 2022, 46(6), e14163. DOI: 10.1111/JFPE.14163.
  • Oliveira, S. M.; Ramos, I. N.; Brandão, T. R. S.; Silva, C. L. M. Effect of Air-Drying Temperature on the Quality and Bioactive Characteristics of Dried Galega Kale (B Rassica Oleracea L. Var. Acephala). J. Food Process. Preserv. 2015, 39(6), 2485–2496. DOI: 10.1111/jfpp.12498.
  • Alibaş, İ.; Yılmaz, A. Influence of Basic Drying Techniques on Color, Protein and Mineral Composition of Coriander Leaves. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2023, 26(5), 1165–1177. DOI: 10.18016/ksutarimdoga.vi.1144982.
  • Oliveira, S. M.; Brandão, T. R. S.; Silva, C. L. M. Influence of Drying Processes and Pretreatments on Nutritional and Bioactive Characteristics of Dried Vegetables: A Review. Food Eng. Rev. 2016, 8(2), 134–163. DOI: 10.1007/s12393-015-9124-0.
  • Liu, L.; Wang, Y.; Zhao, D.; An, K.; Ding, S.; Wang, Z. Effect of Carbonic Maceration Pre-Treatment on Drying Kinetics of Chilli (Capsicum Annuum L.) Flesh and Quality of Dried Product. Food Bioprocess. Technol. 2014, 7(9), 2516–2527. DOI: 10.1007/s11947-014-1253-6.
  • Djendoubi Mrad, N.; Boudhrioua, N.; Kechaou, N.; Courtois, F.; Bonazzi, C. Influence of Air Drying Temperature on Kinetics, Physicochemical Properties, Total Phenolic Content and Ascorbic Acid of Pears. Food Bioprod. Process. 2012, 90(3), 433–441. DOI: 10.1016/j.fbp.2011.11.009.
  • Khodja, Y. K.; Dahmoune, F.; Khettal, K.; Madani, B.; Khettal, B. Conventional Method and Microwave Drying Kinetics of Laurus Nobilis Leaves: Effects on Phenolic Compounds and Antioxidant Activity. Braz. J. Food Technol. 2020, 23. DOI: 10.1590/1981-6723.21419.
  • İ̇̇lter, I.; Akyıl, S.; Devseren, E.; Okut, D.; Koç, M.; Kaymak Ertekin, F. Microwave and Hot Air Drying of Garlic Puree: Drying Kinetics and Quality Characteristics. Heat Mass Transfer. 2018, 54(7), 2101–2112. DOI: 10.1007/s00231-018-2294-6.
  • Chua, L. Y. W.; Chua, B. L.; Figiel, A.; Chong, C. H.; Wojdyło, A.; Szumny, A.; Łyczko, J. Drying of Phyla Nodiflora Leaves: Antioxidant Activity, Volatile and Phytosterol Content, Energy Consumption, and Quality Studies. Processes. 2019, 7(4), 210. DOI: 10.3390/pr7040210.
  • Mishra, M.; Kandasamy, P.; Shukla, R. N.; Kumar, A. Convective Hot-Air Drying of Green Mango: Influence of Hot Water Blanching and Chemical Pretreatments on Drying Kinetics and Physicochemical Properties of Dried Product. Int. J. Fruit Sci. 2021, 21(1), 732–757. DOI: 10.1080/15538362.2021.1930626.
  • Azizpour, M.; Mohebbi, M.; Khodaparast, M. H. H. Effects of Foam-Mat Drying Temperature on Physico-Chemical and Microstructural Properties of Shrimp Powder. Innovative Food Science Emerging Technologies. 2016, 34, 122–126. DOI: 10.1016/j.ifset.2016.01.002.
  • González-Jiménez, F. E. ;, Barojas-Zavaleta, J. E. ;, Vivar-Vera, G. ;, Peredo-Lovillo, A. ;, Morales-Tapia, A. A. ;, Del Ángel-Zumaya, J. A. ;, Erik González-Jiménez, F.; Barojas-Zavaleta, J. E.; Vivar-Vera, G.; Peredo-Lovillo, A.; Morales-Tapia, A. A.; Antonio, J.; Ángel-Zumaya, D.; Reyes-Reyes, M.; Alamilla-Beltrán, L.; Leyva-Daniel, D. E., & Jiménez-Guzmán, J. Effect of Drying Temperature on the Physicochemical, Functional, and Microstructural Properties of Powders from Agave Angustifolia Haw and Agave Rhodacantha Trel. Horticult. 2022. 2022, 8(11), 1070. DOI: 10.3390/HORTICULTURAE8111070.
  • Schuck, P.; Dolivet, A.; Jeantet, R. Determination of the Sorption Isotherm, Water Activity and Hygroscopicity of Powders. Anal. Meth. Food & Dairy Powders. 2012, 167–190. DOI: 10.1002/9781118307397.CH11.
  • Aprajeeta, J.; Gopirajah, R.; Anandharamakrishnan, C. Shrinkage and Porosity Effects on Heat and Mass Transfer During Potato Drying. J. Food Eng. 2015, 144, 119–128. DOI: 10.1016/j.jfoodeng.2014.08.004.
  • Dehghannya, J.; Pourahmad, M.; Ghanbarzadeh, B.; Ghaffari, H. Heat and Mass Transfer Enhancement During Foam-Mat Drying Process of Lime Juice: Impact of Convective Hot Air Temperature. Int. J. Therm. Sci. 2019, 135, 30–43. DOI: 10.1016/j.ijthermalsci.2018.07.023.
  • Raja, K. S.; Taip, F. S.; Azmi, M. M. Z.; Shishir, M. R. I. Effect of Pre-Treatment and Different Drying Methods on the Physicochemical Properties of Carica Papaya L. Leaf Powder. J. Saudi Soc. Agric. Sci. 2019, 18(2), 150–156. DOI: 10.1016/j.jssas.2017.04.001.
  • Dhurve, P.; Kumar Arora, V. (2022). Investigation of Geometric and Gravimetric Properties of Pumpkin Seeds (Cucurbita Maxima) Under Tray Drying. Materials Today: Proceedings, 59, 437–441. 10.1016/j.matpr.2021.11.452
  • Seerangurayar, T.; Manickavasagan, A.; Al-Ismaili, A. M.; Al-Mulla, Y. A. Effect of Carrier Agents on Flowability and Microstructural Properties of Foam-Mat Freeze Dried Date Powder. J. Food Eng. 2017, 215, 33–43. DOI: 10.1016/j.jfoodeng.2017.07.016.
  • CARR, R. E. Fundus Flavimaculatus. Arch. Ophtha. 1965, 74(2), 163–168. DOI: 10.1001/archopht.1965.00970040165007.
  • Öztekin, S.; Erdem, T.; Karaaslan, S. The Influence of Drying on Some Physical Properties of Laurel Berry. Tarım Makinaları Bilimi Dergisi (Journal of Agricultural Machinery Science). 2010, 6(2), 79–84.