1,321
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nutraceutical properties and secondary metabolites of quinoa (Chenopodium quinoa Willd.): a review

, , , , , , & show all
Pages 3477-3491 | Received 08 Sep 2023, Accepted 17 Nov 2023, Published online: 05 Dec 2023

References

  • Mu, H.; Xue, S.; Sun, Q.; Shi, J.; Zhang, D.; Wang, D.; Wei, J. Research Progress of Quinoa Seeds (Chenopodium Quinoa Wild.): Nutritional Components, Technological Treatment, and Application. Foods. 2023, 12(10), 2087. DOI: 10.3390/foods12102087.
  • Maradini-Filho, A. M. Quinoa: Nutritional aspects. J. Nutrac. Food Sci. 2017, 2, 1–5.
  • Vega-Galvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martinez, E. A. Nutrition Facts and Functional Potential of Quinoa (Chenopodium Quinoa Willd.), an Ancient Andean Grain: A Review. J. Sci. Food Agric. 2010, 90(15), 2541–2547. DOI: 10.1002/jsfa.4158.
  • Remanan, M. K.; Zhu, F. Encapsulation of Rutin in Pickering Emulsions Stabilized Using Octenyl Succinic Anhydride (OSA) Modified Quinoa, Maize, and Potato Starch Nanoparticles. Food Chem. 2023, 405, 134790. DOI: 10.1016/j.foodchem.2022.134790.
  • Lu, S.; Li, J.; Ji, J.; Wen, Y.; Li, H.; Wang, J.; Sun, B. Endogenous Protein and Lipid Facilitate the Digestion Process of Starch in Cooked Quinoa Flours. Food Hydrocoll. 2023, 134, 108099. DOI: 10.1016/j.foodhyd.2022.108099.
  • Saeidi, S.; Siadat, S. A.; Moshatati, A.; Moradi-Telavat, S. N. Effect of Sowing Time and Nitrogen Fertilizer Rates on Growth, Seed Yield and Nitrogen Use Efficiency of Quinoa (Chenopodium Quinoa Willd) in Ahvaz, Iran. Iran. J. Crop Sci. 2020, 21(4), 354–367. DOI: 10.29252/abj.21.4.354.
  • Lingiardi, N.; Galante, M.; de Sanctis, M.; Spelzini, D. Are Quinoa Proteins a Promising Alternative to Be Applied in Plant-Based Emulsion Gel Formulation? Food Chem. 2022, 394, 133485. DOI: 10.1016/j.foodchem.2022.133485.
  • Jacobsen, S. E.; Mujica, A.; Jensen, C. R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Inter. 2003, 19(1–2), 99–109. DOI: 10.1081/FRI-120018872.
  • Gamboa, C.; Schuster, M.; Schrevens, E.; Maertens, M. Price Volatility and Quinoa Consumption Among Smallholder Producers in the Andes. Sci. Agropecu. 2020, 11(1), 113–125. DOI: 10.17268/sci.agropecu.2020.01.13.
  • Liu, M.; Zhu, K.; Yao, Y.; Chen, Y.; Guo, H.; Ren, G.; Yang, X.; Li, J. Antioxidant, Anti-Inflammatory, and Antitumor Activities of Phenolic Compounds from White, Red, and Black Chenopodium Quinoa Seed. Cereal Chem. 2020, 97(3), 703–713. DOI: 10.1002/cche.10286.
  • Ballester-Sánchez, J.; Gil, J. V.; Haros, C. M.; Fernández-Espinar, M. T. Effect of Incorporating White, Red or Black Quinoa Flours on Free and Bound Polyphenol Content, Antioxidant Activity and Colour of Bread. Plant Foods Human Nutr. 2019, 74(2), 185–191. DOI: 10.1007/s11130-019-00718-w.
  • Bhargava, A.; Shukla, S.; Ohri, D. Chenopodium quinoa—An Indian perspective. Ind. Crops Prod. 2006, 23(1), 73–87. DOI: 10.1016/j.indcrop.2005.04.002.
  • FAO. (2013) International Year Of Quinoa 2013. https://www.fao.org/quinoa-2013/what-is-quinoa/nutritional-value/en/?no_mobile=1 (Accesed September 1, 2023).
  • Katwal, T. B.; Bazile, D.; Chemura, A. First Adaptation of Quinoa in the Bhutanese Mountain Agriculture Systems. PLoS. One. 2020, 15(1), e0219804. DOI: 10.1371/journal.pone.0219804.
  • Sobota, A.; Swieca, M.; Gęsiński, K.; Wirkijowska, A.; Bochnak, J. Yellow-coated quinoa (Chenopodium quinoa Willd) – physicochemical, nutritional, and antioxidant properties. J. Sci. Food Agric. 2020, 100(5), 2035–2042. DOI: 10.1002/jsfa.10222.
  • Tang, Y.; Li, X.; Chen, P. X.; Zhang, B.; Hernandez, M.; Zhang, H.; Marcone, M. F.; Liu, R.; Tsao, R. Characterisation of Fatty Acid, Carotenoid, Tocopherol/Tocotrienol Compositions and Antioxidant Activities in Seeds of Three Chenopodium Quinoa Willd. Genotypes. Food Chem. 2015, 174, 502–508. DOI: 10.1016/j.foodchem.2014.11.040.
  • Scalbert, A.; Manach, C.; Morand, C.; Remesy, C.; Jimenez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45(4), 287–306. DOI: 10.1080/1040869059096.
  • Jellen, E. N.; Maughana, P. J.; Fuentes, F.; Kolano, B. A. Botany, Phylogeny and Evolution. In Bazile, D.; Bertero, D.; Nieto C. (Eds.); The State of the Art Report of Quinoa in the World; FAO: Rome, 2015; pp. 12–23.
  • Ahmadzai, H. Trends in Quinoa Adoption in Marginal Areas: An Assessment of Economic Viability and Policy Outlook. J. Agribus. Rural Dev. 2020, 57(3), 235–247. DOI: 10.17306/J.JARD.2020.01351.
  • Bazile, D.; Jacobsen, S. E.; Verniau, A. The Global Expansion of Quinoa: Trends and Limits. Front. Plant Sci. 2016, 7, 622. DOI: 10.3389/fpls.2016.00622.
  • Choukr-Allah, R.; Rao, N. K.; Hirich, A.; Shahid, M.; Alshankiti, A.; Toderich, K.; Gill, S.; Butt, K. U. R. Quinoa for Marginal Environments: Toward Future Food and Nutritional Security in MENA and Central Asia Regions. Front. Plant Sci. 2016, 7, 346. DOI: 10.3389/fpls.2016.00346.
  • Jacobsen, S. E. The Scope for Adaptation of Quinoa in Northern Latitudes of Europe. J. Agron Crop Sci. 2017, 203(6), 603–613. DOI: 10.1111/jac.12228.
  • FAO. (2021) Food and Agriculture Organization of the United Nations. FAOSTAT statistical database.
  • Navruz-Varli, S.; Sanlier, N. Nutritional and Health Benefits of Quinoa (Chenopodium Quinoa Willd.). J. Cereal Sci. 2016, 69, 371–376. DOI: 10.1016/j.jcs.2016.05.004.
  • Nowak, V.; Du, J.; Charrondière, U. R. Assessment of the Nutritional Composition of Quinoa (Chenopodium Quinoa Willd.). Food Chem. 2016, 193, 47–54. DOI: 10.1016/j.foodchem.2015.02.111.
  • Pellegrini, M.; Lucas-Gonzales, R.; Ricci, A.; Fontecha, J.; Fernández-López, J.; Pérez-Álvarez, J. A.; Viuda-Martos, M. Chemical, Fatty Acid, Polyphenolic Profile, Techno-Functional and Antioxidant Properties of Flours Obtained from Quinoa (Chenopodium Quinoa Willd) Seeds. Ind. Crops Prod. 2018, 111, 38–46. DOI: 10.1016/j.indcrop.2017.10.006.
  • Chen, Y. S.; Aluwi, N. A.; Saunders, S. R.; Ganjyal, G. M.; Medina-Meza, I. G. Metabolic Fingerprinting Unveils Quinoa Oil as a Source of Bioactive Phytochemicals. Food Chem. 2019, 286, 592–599. DOI: 10.1016/j.foodchem.2019.02.016.
  • Romano, N.; Ureta, M. M.; Guerrero-Sánchez, M.; Gómez-Zavaglia, A. Nutritional and Technological Properties of a Quinoa (Chenopodium Quinoa Willd.) Spray-Dried Powdered Extract. Food Res. Inter. 2020, 129, 108884. DOI: 10.1016/j.foodres.2019.108884.
  • Nowak, V.; Du, J.; Charrondière, U. R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 2016, 193, 47–54. DOI: 10.1016/j.foodchem.2015.02.111.
  • Navruz-Varli, S.; Sanlier, N. Nutritional and health benefits of quinoa (Chenopodium quinoa. J. Cereal. Sci. 2016, 69, 371–376. DOI: 10.1016/j.jcs.2016.05.004.
  • Miranda, M.; Vega-Galvez, A.; Martinez, E.; Lopez, J.; Rodriguez, M. J.; Henriquez, K.; Fuentes, F. Genetic Diversity and Comparison of Physicochemical and Nutritional Characteristics of Six Quinoa (Chenopodium Quinoa Willd.) Genotypes Cultivated in Chile. Cienc. Technol. Aliment. Campinas. 2012, 32(4), 835–843. DOI: 10.1590/S0101-20612012005000114.
  • Hübner, F.; Arendt, E. K. Germination of Cereal Grains as a Way to Improve the Nutritional Value: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53(8), 853–861. DOI: 10.1080/10408398.2011.562060.
  • Pedrali, D.; Giupponi, L.; De la Peña-Armada, R.; Villanueva-Suárez, M.; Mateos-Aparicio, I. The Quinoa Variety Influences the Nutritional and Antioxidant Profile Rather Than the Geographic Factors. Food Chem. 2023, 402, 133531. DOI: 10.1016/j.foodchem.2022.133531.
  • Aziz, A.; Akram, N. A.; Ashraf, M. Influence of Natural and Synthetic Vitamin C (Ascorbic Acid) on Primary and Secondary Metabolites and Associated Metabolism in Quinoa (Chenopodium Quinoa Willd.) Plants Under Water Deficit Regimes. Plant Physiol. Biochem. 2018, 123, 192–203. DOI: 10.1016/j.plaphy.2017.12.004.
  • Pathan, S.; Siddiqui, R. A. Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients. 2022, 14(3), 558. DOI: 10.3390/nu14030558.
  • Shivanna, K. R. Plant and Fungal-Based Meat Analogues for Mitigating the Impacts of Global Warming. J. Indian Botanical Society. 2023. DOI: 10.5958/2455-7218.2023.103.1.00.
  • Mhada, M.; Metougui, M. L.; El Hazzam, K.; El Kacimi, K.; Yasri, A. Variations of Saponins, Minerals and Total Phenolic Compounds Due to Processing and Cooking of Quinoa (Chenopodium Quinoa Willd.) Seeds. Foods. 2020, 9(5), 660. DOI: 10.3390/foods9050660.
  • Lalaleo, L.; Hidalgo, D.; Valle, M.; Calero-Cáceres, W.; Lamuela-Raventós, R. M.; Becerra-Martínez, E. Differentiating, Evaluating, and Classifying Three Quinoa Ecotypes by Washing, Cooking and Germination Treatments, Using 1H NMR-Based Metabolomics Approach. Food Chem. 2020, 331, 127351. DOI: 10.1016/j.foodchem.2020.127351.
  • Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Amarowicz, R.; Opyd, P.; Bez, J.; Muranyi, I.; Petersen, I. L.; Llopis, M. L. Protein-Rich Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid Profile of Rats. Nutrients. 2020, 12(9), 2781. DOI: 10.3390/nu12092781.
  • Shen, Y.; Tang, X.; Li, Y. Drying Methods Affect Physicochemical and Functional Properties of Quinoa Protein Isolate. Food Chem. 2020, 339, 127823. DOI: 10.1016/j.foodchem.2020.127823.
  • Fischer, S.; Wilckens, R.; Jara, J.; Aranda, M.; Valdivia, W.; Bustamante, L.; Graf, F.; Obal, I. Protein and Antioxidant Composition of Quinoa (Chenopodium Quinoa Willd.) Sprout from Seeds Submitted to Water Stress, Salinity and Light Conditions. Dustrial Crop. Prod. 2017, 107, 558–564. DOI: 10.1016/j.indcrop.2017.04.035.
  • Wang, J.; de Wit, M.; Schutyser, M. A. I.; Boom, R. M. Analysis of Electrostatic Powder Charging for Fractionation of Foods. Innov. Food Sci. Emerg. Technol. 2014, 26, 360–365. DOI: 10.1016/j.ifset.2014.06.011.
  • Pelgrom, P. J. M.; Vissers, A. M.; Boom, R. M.; Schutyser, M. A. I. Dry Fractionation for Production of Functional Pea Protein Concentrates. Food. Res. Int. 2013, 3(1), 232–239. DOI: 10.1016/j.foodres.2013.05.004.
  • Motta, C.; Castanheira, I.; Gonzales, G. B.; Delgado, I.; Torres, D.; Santos, M.; Matos, A. S. Impact of Cooking Methods and Malting on Amino Acids Content in Amaranth, Buckwheat and Quinoa. J. Food Comp. Anal. 2019, 76, 58–65. DOI: 10.1016/j.jfca.2018.10.001.
  • Cerdán-Leal, M. A.; López-Alarcón, C. A.; Ortiz-Basurto, R. I.; Luna-Solano, G.; Jiménez-Fernández, M. Influence of Heat Denaturation and Freezing–Lyophilization on Physicochemical and Functional Properties of Quinoa Protein Isolate. Cereal Chem. 2020, 97(2), 373–381. DOI: 10.1002/cche.10253.
  • Ruiz, G. A.; Xiao, W.; van Boekel, M.; Minor, M.; Stieger, M. Effect of Extraction pH on Heat-Induced Aggregation, Gelation and Microstructure of Protein Isolate from Quinoa (Chenopodium Quinoa Willd). Food Chem. 2016, 209, 203–210. DOI: 10.1016/j.foodchem.2016.04.052.
  • Wang, R.; Xu, P.; Chen, Z.; Zhou, X.; Wang, T. Complexation of Rice Proteins and Whey Protein Isolates by Structural Interactions to Prepare Soluble Protein Composites. LWT—Food Sci. Technol. 2019, 101, 207–213. DOI: 10.1016/j.lwt.2018.11.006.
  • Wang, X.; Zhao, R.; Yuan, W. Composition and Secondary Structure of Proteins Isolated from Six Different Quinoa Varieties from China. J. Cereal Sci. 2020, 95, 103036. DOI: 10.1016/j.jcs.2020.103036.
  • Aussenac, T.; Rhazi, L.; Branlard, G. Molecular Weight Distribution of Polymeric Proteins in Wheat Grains: The Rheologically Active Polymers. Foods. 2020, 9(11), 1675. DOI: 10.3390/foods9111675.
  • Benito-Román, O.; Rodríguez-Perrino, M.; Sanz, M. T.; Melgosa, R.; Beltrán, S. Supercritical Carbon Dioxide Extraction of Quinoa Oil: Study of the Influence of Process Parameters on the Extraction Yield and Oil Quality. J. Supercritical Fluids. 2018, 139, 62–71. DOI: 10.1016/j.supflu.2018.05.009.
  • Graf, B. L.; Rojo, L. E.; Delatorre-Herrera, J.; Poulev, A.; Calfio, C.; Raskin, I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium Quinoa Willd.). Compr. Rev. Food Sci Safety. 2015, 14(4), 431–445. DOI: 10.1111/1541-4337.12135.
  • Onwulata, C. I.; Thomas, A. E.; Cooke, P. H.; Phillips, J. G.; Carvalho, C. W. P.; Ascheri, J. L. R.; Tomasula, P. M. Glycemic Potential of Extruded Barley, Cassava, Corn, and Quinoa Enriched with Whey Proteins and Cashew Pulp. Int. J. Food Prop. 2010, 13(2), 338–359. DOI: 10.1080/10942910802398487.
  • Jancurová, M.; Minaroviˇcová, L.; Dandár, A. Quinoa-A review. Czech J. Food Sci. 2009, 27(2), 71–79. DOI: 10.17221/32/2008-CJFS.
  • Li, G.; Wang, S.; Zhu, F. Physicochemical Properties of Quinoa Starch. Carbohydr. Polym. 2016, 137, 328–338. DOI: 10.1016/j.carbpol.2015.10.064.
  • Jan, K. N.; Panesar, P. S.; Singh, S. Effect of Moisture Content on the Physical and Mechanical Properties of Quinoa Seeds. Int. Agrophys. 2019, 33(1), 41–48. DOI: 10.31545/intagr/104374.
  • Alvarez-Jubete, L.; Arendt, E. K.; Gallagher, E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Inter. J. Food Sci. Nutr. 2009, 60(sup4), 240–257. DOI: 10.1080/09637480902950597.
  • Liu, J.; Wang, Z.; Mai, P.; Hao, Y.; Wang, Z.; Wang, J. Quinoa Bran Soluble Dietary Fiber Ameliorates Dextran Sodium Sulfate Induced Ulcerative Colitis in BALB/C Mice by Maintaining Intestinal Barrier Function and Modulating Gut Microbiota. Int J Biol Macromol. 2022, 216, 75–85. DOI: 10.1016/j.ijbiomac.2022.06.194.
  • Zhu, F. Dietary Fiber Polysaccharides of Amaranth, Buckwheat and Quinoa Grains: A Review of Chemical Structure, Biological Functions and Food Uses. Carbohydr. Polym. 2020, 248, 116819. DOI: 10.1016/j.carbpol.2020.116819.
  • Contreras-Jiménez, B.; Torres-Vargas, O. L.; Rodríguez-García, M. E. Physicochemical Characterization of Quinoa (Chenopodium quinoa) Flour and Isolated Starch. Food Chem. 2019, 298, 124982. DOI: 10.1016/j.foodchem.2019.124982.
  • Pellegrini, M.; Lucas-Gonzales, R.; Ricci, A.; Fontecha, J.; Fernández-López, J.; Pérez-Álvarez, J. A.; Viuda-Martos, M. Chemical, Fatty Acid, Polyphenolic Profile, Techno-Functional and Antioxidant Properties of Flours Obtained from Quinoa (Chenopodium Quinoa Willd) Seeds. Ind. Crop Prod. 2018, 111, 38–46. DOI: 10.1016/j.indcrop.2017.10.006.
  • Abugoch, L. E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional and functional properties. Adv. Food Nutr. Res. 2009, 58, 1–31.
  • Ruales, J.; Nair, B. M. Nutritional Quality of the Protein in Quinoa (Chenopodium quinoa, Willd) Seeds. Plant Foods Hum. Nutr. 1992, 42(1), 1–11. DOI: 10.1007/BF02196067.
  • El Hazzam, K.; Hafsa, J.; Sobeh, M.; Mhada, M.; Taourirte, M.; EL Kacimi, K.; Yasri, A. An Insight into Saponins from Quinoa (Chenopodium quinoa Willd): A Review. Molecules. 2020, 25(5), 1059. DOI: 10.3390/molecules25051059.
  • Gomez-Caravaca, A. M.; Iafelice, G.; Lavini, A.; Pulvent, C.; Caboni, M. F.; Marconi, E. Phenolic Compounds and Saponins in Quinoa Samples (Chenopodium Quinoa Willd.) Grown Under Different Saline and Nonsaline Irrigation Regimens. J. Agric. Food. Chem. 2012, 60(18), 4620–4627. DOI: 10.1021/jf3002125.
  • Yao, Y.; Yang, X.; Shi, Z.; Ren, G. Anti-Inflammatory Activity of Saponins from Quinoa (Chenopodium Quinoa Willd.) Seeds in Lipopolysaccharide-Stimulated RAW264.7 Macrophages Cells. J. Food Sci. 2014, 79(5), H1018–H1023. DOI: 10.1111/1750-3841.12425.
  • Stuardo, M.; San Martin, R. Antifungal Properties of Quinoa (Chenopodium Quinoa Willd) Alkali Treated Saponins Against Botrytis Cinerea. Ind. Crops Prod. 2008, 27(3), 296–302. DOI: 10.1016/j.indcrop.2007.11.003.
  • Dini, I.; Tenore, G. C.; Dini, A. Antioxidant Compound Contents and Antioxidant Activity Before and After Cooking in Sweet and Bitter Chenopodium Quinoa Seeds. LWT-Food Sci. Tech. 2010, 43(3), 447–451. DOI: 10.1016/j.lwt.2009.09.010.
  • Mohyuddin, S. G.; Riaz, A.; Qamar, A.; Ali, S. H.; Hu, C.; Wu, L.; Yu, T.; Ju, X. H. Quinoa is Beneficial to the Comprehensive Nutritional Value of Potential Health. Pakistan J. Sci. 2019, 70, 69–74.
  • Macarena, S.; Ricardo, S. N. Antifungal properties of quinoa (Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea. Ind. Crops Prod. 2008, 27(3), 296–302. DOI: 10.1016/j.indcrop.2007.11.003.
  • Yendo, A. C. A.; De Costa, F.; Gosmann, G.; Fett-Neto, A. G. Production of Plant Bioactive Triterpenoid Saponins: Elicitation Strategies and Target Genes to Improve Yields. Mol. Biotechnol. 2010, 46(1), 94–104. DOI: 10.1007/s12033-010-9257-6.
  • Samtiya, M.; Aluko, R. E.; Dhewa, T.; Moreno-Rojas, J. M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods. 2021, 10(4), 839. DOI: 10.3390/foods10040839.
  • Tang, Y.; Zhang, B.; Li, X.; Chen, P. X.; Zhang, H.; Liu, R.; Tsao, R. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects. J. Agric. Food. Chem. 2016, 64(8), 1712–1719. DOI: 10.1021/acs.jafc.5b05761.
  • Escribano, J.; Cabanes, J.; Jiménez-Atiénzar, M.; Ibañez-Tremolada, M.; Gómez-Pando, L. R.; García-Carmona, F.; Gandía-Herrero, F. Characterization of Betalains, Saponins and Antioxidant Power in Differently Colored Quinoa (Chenopodium quinoa) Varieties. Food Chem. 2017, 234, 285–294. DOI: 10.1016/j.foodchem.2017.04.187.
  • Abderrahim, F.; Huanatico, E.; Segura, R.; Arribas, S.; Gonzalez, M. C.; Condezo-Hoyos, L. Physical Features, Phenolic Compounds, Betalains and Total Antioxidant Capacity of Coloured Quinoa Seeds (Chenopodium Quinoa Willd.) from Peruvian Altiplano. Food Chem. 2015, 183, 83–90. DOI: 10.1016/j.foodchem.2015.03.029.
  • Ann-Mari Repo-Carrasco-Valencia, R.; Lesli Astuhuaman, S. Quinoa (Chenopodium quinoa, Willd.) as a Source of Dietary Fiber and Other Functional Components. Food Sci. Technol. 2011, 31(1), 225–230. DOI: 10.1590/S0101-20612011000100035.
  • Neagu, C.; Barbu, V. Principal Component Analysis of the Factors Involved in the Extraction of Beetroot Betalains. J. Agroaliment. Proc. Technol. 2014, 20, 311–318.
  • Gengatharan, A.; Dykes, G. A.; Choo, W. S. Betalains: Natural Plant Pigments with Potential Application in Functional Foods. LWT. Food Sci. Technol. 2015, 64(2), 645–649. DOI: 10.1016/j.lwt.2015.06.052.
  • Aguilar-Tuesta, S.; Mamani-Navarro, W.; Espinoza-Silva, C.; Basilio-Atencio, J.; Condezo-Hoyos, L. Microencapsulated Betacyanin from Colored Organic Quinoa (Chenopodium Quinoa Willd.): Optimization, Physicochemical Characterization and Accelerated Storage Stability. J. Sci. Food Agric. 2018, 98(15), 5873–5883. DOI: 10.1002/jsfa.9152.
  • Esatbeyoglu, T.; Wagner, A. E.; Schiniatbeyo, V. B.; Rimbach, G. Betanin—A Food Colorant with Biological Activity. Mol. Nutr. Food Res. 2015, 59(1), 36–47. DOI: 10.1002/mnfr.201400484.
  • Woldemichael, G. M.; Wink, M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. J. Agric. Food. Chem. 2001, 49(5), 2327–2332. DOI: 10.1021/jf0013499.
  • Han, Y.; Chi, J.; Zhang, M.; Zhang, R.; Fan, S.; Dong, L.; Huang, F.; Liu, L. Changes in Saponins, Phenolics and Antioxidant Activity of Quinoa (Chenopodium Quinoa Willd) During Milling Process. LWT. Food Sci. Technol. 2019, 114, 108381. DOI: 10.1016/j.lwt.2019.108381.
  • Okarter, N.; Liu, R. H. Health Benefits of Whole Grain Phytochemicals. Crit. Rev. Food Sci. Nutr. 2010, 50(3), 193–208. DOI: 10.1080/10408390802248734.
  • Filho, A. M. M.; Pirozi, M. R.; Borges, J. T. D. S.; Sant’ana, H. M. P.; Chaves, J. B. P.; Coimbra, J. D. R. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017, 57(8), 1618–1630. DOI: 10.1080/10408398.2014.1001811.
  • Craine, E. B.; Murphy, K. M. Seed Composition and Amino Acid Profiles for Quinoa Grown in Washington State. Front Nutr. 2020, 7, 126. DOI: 10.3389/fnut.2020.00126.
  • Castro-Alba, V.; Lazarte, C. E.; Perez-Rea, D.; Carlsson, N. G.; Almgren, A.; Bergenståhl, B.; Granfeldt, Y. Fermentation of Pseudocereals Quinoa, Canihua, and Amaranth to Improve Mineral Accessibility Through Degradation of Phytate. J. Sci. Food Agric. 2019, 99(11), 5239–5248. DOI: 10.1002/jsfa.9793.
  • Da-Silva, W. S.; Harney, J. W.; Kim, B. W.; Li, J.; Bianco, S. D.; Crescenzi, A.; Christoffolete, M. A.; Huang, S. A.; Bianco, A. C. The Small Polyphenolic Molecule Kaempferol Increases Cellular Energy Expenditure and Thyroid Hormone Activation. Diabetes. 2007, 56(3), 767–776. DOI: 10.2337/db06-1488.
  • Reguera, M.; Conesa, C. M.; Gil-Gómez, A.; Haros, C. M.; Pérez-Casas, M. Á.; Briones-Labarca, V.; Bolaños, L.; Bonilla, I.; Álvare, B.; Pinto, K., et al. The Impact of Different Agroecological Conditions on the Nutritional Composition of Quinoa Seeds. PeerJ. 2018, 6, e4442. DOI: 10.7717/peerj.4442.
  • Sood, P.; Modgil, R.; Sood, M.; Chuhan, P. K. Anti-nutrient profile of different chenopodium cultivars leaves. Annals Food Sci. Technol. 2012, 13, 68–74.
  • Valencia-Chamorro, S. Quinoa-Overview. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C., Corke, H., Seetharaman, K. Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; Vol. 1, pp. 341–348.
  • Ruales, J.; de Grijalva, Y.; Lopez-Jaramillo, P.; Nair, B. M. The Nutritional Quality of an Infant Food from Quinoa and Its Effect on the Plasma Level of Insulin-Like Growth Factor-1 (IGF-1) in Undernourished Children. Int. J. Food Sci. Nutr. 2002, 53(2), 143–154. DOI: 10.1080/09637480220132157.
  • De Carvalho, F. G.; Ovidio, P. P.; Padovan, G. J.; Jordao Junior, A. A.; Marchini, J. S.; Navarro, A. M. Metabolic Parameters of Postmenopausal Women After Quinoa or Corn Flakes Intake – a Prospective and Double-Blind Study. Int. J. Food Sci. Nutr. 2014, 65(3), 380–385. DOI: 10.3109/09637486.2013.866637.
  • Li, L.; Lietz, G.; Bal, W.; Watson, A.; Morfey, B.; Seal, C. Effects of Quinoa (Chenopodium Quinoa Willd.) Consumption on Markers of CVD Risk. Nutrients. 2018, 10(6), 777. DOI: 10.3390/nu10060777.
  • Díaz-Rizzolo, D. A.; Acar-Denizli, N.; Kostov, B.; Roura, E.; Sisó-Almirall, A.; Delicado, P.; Gomis, R. Glycaemia Fluctuations Improvement in Old-Age Prediabetic Subjects Consuming a Quinoa-Based Diet: A Pilot Study. Nutrients. 2022, 14(11), 2331. DOI: 10.3390/nu14112331.
  • Bastidas, E. G.; Roura, R.; Rizzolo, D. A. D.; Massanes, T.; Gomis, R. Quinoa (Chenopodium Quinoa Willd) from Nutritional Value to Potential Health Benefits: An Integrative Review. J. Nutr. Food Sci. 2016, 6(3), 497.
  • Gorinstein, S.; Lojek, A.; Cíž, M.; Pawelzik, E.; Delgado-Licon, E.; Medina, O. J.; Moreno, M.; Salas, I. A.; Goshev, I. Comparison of Composition and Antioxidant Capacity of Some Cereals and Pseudocereals. Inter. J. Food Sci. Technol. 2008, 43(4), 629–637. DOI: 10.1111/j.1365-2621.2007.01498.x.
  • Banerjee, A.; Pasea, L.; Harris, S.; Gonzalez-Izquierdo, A.; Torralbo, A.; Shallcross, L.; Noursadeghi, M.; Pillay, D.; Sebire, N.; Holmes, C., et al. Estimating Excess 1-Year Mortality Associated with the COVID-19 Pandemic According to Underlying Conditions and Age: A Population-Based Cohort Study. Lancet. 2020, 395(10238), 1715–1725.
  • Sampaio, S. L.; Fernandes, A.; Pereira, C.; Calhelha, R. C.; Sokovic, M.; Santos-Buelga, C.; Ferreira, I. C. F. R. Nutritional value, physicochemical characterization and bioactive properties of the Brazilian quinoa BRS Piabiru. Food Funct. 2020, 11(4), 2969–2977. DOI: 10.1039/D0FO00055H.
  • Bathori, M.; Tóth, N.; Hunyadi, A.; Márki, A.; Zádor, E. Phtoecdysteroids and Anabolic-Androgenic Steroids—Structure and Effects in Humans. Curr. Med. Chem. 2008, 15(1), 75–91. DOI: 10.2174/092986708783330674.
  • Hussain, M. I.; Farooq, M.; Syed, Q. A.; Al-Ghamdi, A. A.; Hataleh, A. A. Botany, nutritional value, phytochemical composition and biological activities of quinoa. Plants. 2021, 10(11), 2258. DOI: 10.3390/plants10112258.
  • Xia, X.; Zhang, Q.; Liu, R.; Wang, Z.; Tang, N.; Liu, F.; Huang, G.; Jiang, X.; Gui, G.; Wang, L., et al. Effects of 20-Hydroxyecdysone on Improving Memory Deficits in Streptozotocin-Induced Type 1 Diabetes Mellitus in Rat. Eur. J. Pharmacol. 2014, 740, 45–52. DOI: 10.1016/j.ejphar.2014.06.026.