707
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of nanocomposite film based on elephant foot-yam starch (Amorphophallus paeoniifolius) with different nanocrystalline cellulose concentration

ORCID Icon, , , , &
Pages 3512-3530 | Received 11 Aug 2023, Accepted 17 Nov 2023, Published online: 06 Dec 2023

References

  • Atiwesh, G.; Mikhael, A.; Parrish, C. C.; Banoub, J.; Le, T.-A. T. Environmental Impact of Bioplastic Use: A Review. Heliyon. Sep 2021, 7(9), e07918. DOI: 10.1016/j.heliyon.2021.e07918.
  • Herawati, H. Potential for Development of Digestible Starch Products as Functional Food. J. Lit. Pertanian May 2010, 30(1), 31–39.
  • Clarinsa, R. M.; Sutoyo, S. Manufacturing and Characterizing Biodegradable Plastic from Hdpe (High Density Polyethylene) Composite and ELephant Foot-Yam Tuber Starch. Unesa J. Chem. Jan 2021, 10(1), 85–95. DOI: 10.26740/ujc.v10n1.p85-95.
  • Adriansyah, R. C. E. Characterization of Physicochemical and Functional Properties of Elephant Foot-Yam Starch (Amorphophallus Campanulatus Var. Hortensis) Using the Heat Moisture Treatment Method; Bogor Institute of Agriculture: Bogor, 2014.
  • Hasan, M.; Gopakumar, D. A.; Olaiya, N. G.; Zarlaida, F.; Alfian, A.; Aprinasari, C.; Alfatah, T.; Rizal, S.; Khalil, H. P. S. A. Evaluation of the Thermomechanical Properties and Biodegradation of Brown Rice Starch-Based Chitosan Biodegradable Composite Film. Int. J. Biol. Macromol. Aug, 2020, 156, 896–905. DOI: 10.1016/j.ijbiomac.2020.04.039.
  • Harunsyah, M. Y.; Fauzan, R.; Fauzan, R. Mechanical Properties of Bioplastics Cassava Starch Film with Zinc Oxide Nanofiller as Reinforcement. IOP Conf. Ser Mater. Sci. Eng. Jun, 2017, 210, 012015. DOI: 10.1088/1757-899X/210/1/012015.
  • Abdullah, A. H. D.; Putri, O. D.; Fikriyyah, A. K.; Nissa, R. C.; Intadiana, S. Effect of Microcrystalline Cellulose on Characteristics of Cassava Starch-Based Bioplastic. Polym. Plast. Technol. Eng. Aug 2020, 59(12), 1250–1258. doi:10.1080/25740881.2020.1738465.
  • Ounkaew, A.; Janaum, N.; Kasemsiri, P.; Okhawilai, M.; Hiziroglu, S.; Chindaprasirt, P. Synergistic Effect of Starch/Polyvinyl Alcohol/Citric Acid Films Decorated with in-Situ Green-Synthesized Nano Silver on Bioactive Packaging Films. J. Environ. Chem. Eng. Dec 2021, 9(6), 106793. doi:10.1016/j.jece.2021.106793.
  • Lagaron, J. M.; Lopez-Rubio, A. Nanotechnology for Bioplastics: Opportunities, Challenges and Strategies. Trends Food Sci. Technol. Nov 2011, 22(11), 611–617. doi:10.1016/j.tifs.2011.01.007.
  • Jamróz, E.; Kulawik, P.; Kopel, P. The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Pol. (Basel). Apr 2019, 11(4), 675. DOI: 10.3390/polym11040675.
  • Arrieta, M. P.; Peponi, L.; López, D.; López, J.; Kenny, J. M. An Overview of Nanoparticles Role in the Improvement of Barrier Properties of Bioplastics for Food Packaging Applications. In Food Packaging; Elsevier: 2017; pp. 391–424. doi:10.1016/b978-0-12-804302-8.00012-1
  • Landry, V.; Alemdar, A.; Blanchet, P. Nanocrystalline Cellulose: Morphological, Physical, and Mechanical Properties. For. Products J. 2011, 61(2), 104–112. DOI: 10.13073/0015-7473-61.2.104.
  • Ilyas, R. A.; Sapuan, S. M.; Lamin Sanyang, M.; Ridzwan Ishak, M., “Nanocrystalline Cellulose Reinforced Starch-Based Nanocomposites: A Review,” 5th Postgraduate Seminar On Natural Fiber Composites, Dec. 2016, [Online]. Available: https://www.researchgate.net/publication/315675302
  • Noshirvani, N.; Hong, W.; Ghanbarzadeh, B.; Fasihi, H.; Montazami, R. Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. Int. J. Biol. Macromol. Feb 2018, 107, 2065–2074. DOI: 10.1016/j.ijbiomac.2017.10.083.
  • Noshirvani, N.; Ghanbarzadeh, B.; Fasihi, H.; Almasi, H. Starch–PVA Nanocomposite Film Incorporated with Cellulose Nanocrystals and MMT: A Comparative Study. Int. J. Food Eng. Feb 2016, 12(1), 37–48. doi:10.1515/ijfe-2015-0145.
  • Yildirim-Yalcin, M.; Tornuk, F.; Toker, O. S. Recent Advances in the Improvement of Carboxymethyl Cellulose-Based Edible Films. Trends Food Sci. Technol. Nov 2022, 129, 179–193. DOI: 10.1016/j.tifs.2022.09.022.
  • Azwar, E.; Asmara, P.; Darni, D. Y. Characterization of Edible Film from Corn Starch with Glycerol Plasticizer and CMC Filler as Food Packaging Material. Journal Teknologi dan Inovasi Industri. 2022, 03(1), 23–31.
  • Yaradoddi, J. S.; Banapurmath, N. R.; Ganachari, S. V.; Soudagar, M. E. M.; Mubarak, N. M.; Hallad, S.; Hugar, S.; Fayaz, H. Biodegradable Carboxymethyl Cellulose Based Material for Sustainable Packaging Application. Sci. Rep. 2020 Dec, 10(1), 21960. DOI: 10.1038/s41598-020-78912-z.
  • Saputra, A.; Lutfi, M.; Masruroh, E. Study on the Production and Mechanical Characteristics of Biodegradable Plastics Made from Elephant Foot-Yam (Amorphophallus Campanulatus). Jurnal Keteknikan Pertanian Tropis dan Biosistem Feb 2015, 3(1), 1–6.
  • Arifin, H. R.; Djali, M.; Nurhadi, B.; Hasim, S. A.; Hilmi, A.; Puspitasari, A. V. Improved Properties of Corn Starch-Based Bio-Nanocomposite Film with Different Types of Plasticizers Reinforced by Nanocrystalline Cellulose. Int. J. Food. Prop. Dec 2022, 25(1), 509–521. doi:10.1080/10942912.2022.2052085.
  • Al Fath, M. T.; Lubis, M.; Ayu, G. E.; Dalimunthe, N. F. Effect of Nanocrystalline Cellulose from Palm Oil Fiber as a Filler and Potassium Chloride as a Dispersing Agent on the Physical Properties of Avocado Seed Starch (Persea Americana) Based Bioplastics. J. Chem. Eng USU. Sep 2022, 11(2), 89–94. DOI: 10.32734/jtk.v11i2.9239.
  • Nasution, H.; Harahap, H.; Al Fath, M. T.; Afandy, Y. Physical Properties of Sago Starch Biocomposite Filled with Nanocrystalline Cellulose (NCC) from Rattan Biomass: The Effect of Filler Loading and Co-Plasticizer Addition. IOP Conf. Ser Mater. Sci. Eng. Feb, 2018, 309, 012033. DOI: 10.1088/1757-899X/309/1/012033.
  • Rahmawati, M.; Arief, M.; Satyantini, W. H. The Effect of Sorbitol Addition on the Characteristic of Carrageenan Edible Film. IOP Conf. Ser. Earth Environ. Sci. Mar, 2019, 236, 012129. DOI: 10.1088/1755-1315/236/1/012129.
  • Arifin, H. R.; Djali, M.; Nurhadi, B.; Hasim, S. A.; Hilmi, A.; Puspitasari, A. V. Improved Properties of Corn Starch-Based Bio-Nanocomposite Film with Different Types of Plasticizers Reinforced by Nanocrystalline Cellulose. Int. J. Food. Prop. 2022, 25(1), 509–521. DOI: 10.1080/10942912.2022.2052085.
  • Al Fath, M. T.; Nasution, H.; Harahap, H.; Ayu, G. E., “Biocomposite of Pectin and Starch Filled with Nanocrystalline Cellulose (NCC): The Effect of Filler Loading and Glycerol Addition,” in AIP Conference Proceedings, American Institute of Physics Inc, Nov. 2019. doi: 10.1063/1.5134576.
  • Nasution, H.; Afandy, Y.; Al-Fath, M. T. Effect of Cellulose Nanocrystals (CNC) Addition and Citric Acid as Co-Plasticizer on Physical Properties of Sago Starch Biocomposite; 2018; p. 020039. DOI: 10.1063/1.5030261.
  • Arifin, H. R.; Djali, M.; Nurhadi, B.; Azlin-Hasim, S.; Masruchin, N.; Vania, P. A.; Hilmi, A. Corn Starch-Based Bionanocomposite Film Reinforced with ZnO Nanoparticles and Different Types of Plasticizers. Front. Sustain. Food Syst. 6, Jul, 2022. 10.3389/fsufs.2022.886219.
  • Oluwasina, O. O.; Akinyele, B. P.; Olusegun, S. J.; Oluwasina, O. O.; Mohallem, N. D. S. Evaluation of the Effects of Additives on the Properties of Starch-Based Bioplastic Film. Sn. Appl. Sci. Apr 2021, 3(4), 421. DOI: 10.1007/s42452-021-04433-7.
  • Hasri, M. S.; Pratiwi, D. E. Synthesis and characterization of bioplastics made from chitosan combined using glycerol plasticizer. Ind. J. Fund. Sci. Oct2021, 7(2): 110–119.
  • Febrianto Sinaga, R.; Gita Minawarisa Ginting, M. H. S. G.; Hasibuan, R.; Hasibuan, R. The Effect of Adding Glycerol on the Properties of Tensile Strength and Elongation at Break of Bioplastic from Taro Tumber Starch. J. Chem. Eng USU. Jul 2014, 3(2), 19–24. DOI: 10.32734/jtk.v3i2.1608.
  • Illing, I.; MB, S. Bioplastic FTIR Test from Sago Drugs Waste with the Addition of Varied Gelatin Concentration. J. Dinamika Sep 2017, 8(2), 1–13.
  • Shafqat, A.; Al-Zaqri, N.; Tahir, A.; Alsalme, A. Synthesis and Characterization of Starch Based Bioplatics Using Varying Plant-Based Ingredients, Plasticizers and Natural Fillers. Saudi J. Biol. Sci. Mar 2021, 28(3), 1739–1749. doi:10.1016/j.sjbs.2020.12.015.
  • Haghighi, H.; Maria G.; Salvatore L. C.; Frank P.; Heinz W. S.; Fabio L.; Andrea P. Characterization of Bio-Nanocomposite Films Based on Gelatin/Polyvinyl Alcohol Blend Reinforced with Bacterial Cellulose Nanowhiskers for Food Packaging Applications. Food. Hydro. Apr 2021, 113, 106454. DOI: 10.1016/j.foodhyd.2020.106454.
  • Fitriani, F.; Aprilia, S.; Arahman, N.; Bilad, M. R.; Suhaimi, H.; Huda, N. Properties of Biocomposite Film Based on Whey Protein Isolate Filled with Nanocrystalline Cellulose from Pineapple Crown Leaf. Polymers (Basel). Dec 2021, 13(24), 4278. DOI: 10.3390/polym13244278.
  • de S Coelho, C. C.; Silva, R. B. S.; Carvalho, C. W. P.; Rossi, A. L.; Teixeira, J. A.; Freitas-Silva, O.; Cabral, L. M. C. Cellulose Nanocrystals from Grape Pomace and Their Use for the Development of Starch-Based Nanocomposite Films. Int. J. Biol. Macromol. Sep, 2020, 159, 1048–1061. DOI: 10.1016/j.ijbiomac.2020.05.046.
  • Rostini, I.; Intan Pratama, R.; Rochima, E. Characterization of Bioplastic Packaging from Tapioca Flour Modified with the Addition of Chitosan and Fish Bone Gelatin. World Sci. News. 2019, 135, 85–98. [Online]. Available. www.worldscientificnews.com
  • Idris, A.; Muntean, A.; Mesic, B. A Review on Predictive Tortuosity Models for Composite Films in Gas Barrier Applications. J. Coat. Technol. Res. May 2022, 19(3), 699–716. DOI: 10.1007/s11998-021-00579-6.
  • Sikora, J. W.; Majewski, Ł.; Puszka, A. Modern Biodegradable Plastics—Processing and Properties Part II. Materials. May 2021, 14(10), 2523. doi:10.3390/ma14102523.
  • Shojaeiarani, J.; Bajwa, D. S.; Chanda, S. Cellulose nanocrystal based composites: A review. Compos. Part C: Open Access. Jul 2021, 5, 100164. DOI: 10.1016/j.jcomc.2021.100164.
  • George, J.; Sabapathi, S. N. Cellulose Nanocrystals: Synthesis, Functional Properties, and Applications. Nanotechnol. Sci. Appl. Nov 2015, 45. 10.2147/NSA.S64386.
  • Santana, R. F.; Bonomo, R. C. F.; Gandolfi, O. R. R.; Rodrigues, L. B.; Santos, L. S.; dos Santos Pires, A. C.; de Oliveira, C. P.; da Costa Ilhéu Fontan, R.; Veloso, C. M. Characterization of Starch-Based Bioplastics from Jackfruit Seed Plasticized with Glycerol. J. Food Sci. Technol. 2018 Jan, 55(1), 278–286. DOI: 10.1007/s13197-017-2936-6.
  • Saiful, H. H.; Saleha, S.; Iqbalsyah, T. M.; Iqbalsyah, T. M. Development of Bioplastic from Wheat Janeng Starch for Food Packaging. IOP Conf. Ser Mater. Sci. Eng. May 2019, 523(1), 012015. DOI: 10.1088/1757-899X/523/1/012015.
  • Lusiana, S.; Putri, D.; Nurazizah, I. Z.; Bahruddin. Bioplastic Properties of Sago-PVA Starch with Glycerol and Sorbitol Plasticizers. J. Phys. Conf. Ser. Nov 2019, 1351(1), 012102. doi:10.1088/1742-6596/1351/1/012102.
  • Abdollahi, M.; Alboofetileh, M.; Behrooz, R.; Rezaei, M.; Miraki, R. Reducing Water Sensitivity of Alginate Bio-Nanocomposite Film Using Cellulose Nanoparticles. Int. J. Biol. Macromol. Mar 2013, 54, 166–173. DOI: 10.1016/j.ijbiomac.2012.12.016.
  • Arief, M. D.; Mubarak, A. S.; Pujiastuti, D. Y., “The Concentration of Sorbitol on Bioplastic Cellulose Based Carrageenan Waste on Biodegradability and Mechanical Properties Bioplastic,” IOP Conference Series: Earth and Environmental Science, vol. 679, p. 012013, Feb. 2021, doi: 10.1088/1755-1315/679/1/012013.
  • Widiriani, R. Ecofarming Model to Achieve Sustainable Farming Systems in High-Altitude Lands Utilized by Communities (Case Study in Lembang Subdistrict, West Bandung Regency, and Dongko Subdistrict, Trenggalek Regency); Bogor Agricultural Institute: Bogor, 2009.
  • Ghasemlou, M.; Daver, F.; Murdoch, B. J.; Ball, A. S.; Ivanova, E. P.; Adhikari, B. Biodegradation of Novel Bioplastics Made of Starch, Polyhydroxyurethanes and Cellulose Nanocrystals in Soil Environment. Sci. Total Environ. Apr 2022, 815, 152684. DOI: 10.1016/j.scitotenv.2021.152684.
  • Folino, A.; Karageorgiou, A.; Calabrò, P. S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability. Jul 2020, 12(15), 6030. DOI: 10.3390/su12156030.
  • Karimi, M.; Naimi-Jamal, M. R. Carboxymethyl Cellulose as a Green and Biodegradable Catalyst for the Solvent-Free Synthesis of Benzimidazoloquinazolinone Derivatives. J. Saudi Chem. Soc. Feb 2019, 23(2), 182–187. doi:10.1016/j.jscs.2018.06.007.
  • Li, R.; Zhu, X.; Peng, F.; Lu, F. Biodegradable, Colorless, and Odorless PLA/PBAT Bioplastics Incorporated with Corn Stover. ACS Sustain. Chem. Eng. Jun 2023, 11(24), 8870–8883. doi:10.1021/acssuschemeng.3c00691.
  • Neves, A. C.; Ming, T.; Mroczkowska, M.; Culliton, D. The Effect of Different Starches in the Environmental and Mechanical Properties of Starch Blended Bioplastics. Adv Sci, Tech & Engi. Sys. J. Nov 2020, 5(6), 550–554. DOI: 10.25046/aj050666.
  • Agusman; Fransiska, D.; Murdinah; T.; Irianto, H. E.; Priambudi, P.; Fateha; Abdullah, A. H. D.; Nissa, R. D.; Firdiana, B. Nurhayati Physical Properties of Bioplastic Agar/Chitosan Blend. IOP Conf. Ser. Earth Environ. Sci. Feb 2022, 978(1), 012046. DOI: 10.1088/1755-1315/978/1/012046.
  • Montava-Jorda, S.; Lascano, D.; Quiles-Carrillo, L.; Montanes, N.; Boronat, T.; Martinez-Sanz, A.V.; Ferrandiz-Bou, S; Torres-Giner, S. Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-Co-Glycidyl Methacrylate). Polymers (Basel). Jan 2020, 12(1), 174. DOI: 10.3390/polym12010174.
  • Omidi, M.; Fatehinya, A.; Farahani, M;, Akbari, Z.; Shahmoradi, S.; Yazdian, F.; Tahriri, M.; Moharamzadeh, K.; Tayebi, L.; Vashaee, D. Characterization of biomaterials,” in Biomaterials for Oral and Dental Tissue Engineering, Elsevier; 2017pp. 97–115. 10.1016/B978-0-08-100961-1.00007-4.
  • Amin, M. R.; Chowdhury, M. A.; Kowser, M. A. Characterization and Performance Analysis of Composite Bioplastics Synthesized Using Titanium Dioxide Nanoparticles with Corn Starch. Heliyon. Aug 2019, 5(8), e02009. doi:10.1016/j.heliyon.2019.e02009.
  • Agustin, M. B.; Ahmmad, B.; Alonzo, S. M. M.; Patriana, F. M. Bioplastic Based on Starch and Cellulose Nanocrystals from Rice Straw. J. Reinf. Plast. Compos. Dec 2014, 33(24), 2205–2213. doi:10.1177/0731684414558325.
  • Trache, D., Tarchoun, A. F.; Derradji, M.; Hamidon, T. S.; Masruchin, N.; Brosse, N.; Hussin, M. H. Nanocellulose: From Fundamentals to Advanced Applications. Front. Chem. 8, May, 2020. 10.3389/fchem.2020.00392.
  • Muhammad, A.; Roslan, A.; Sanusi, S. N. A.; Shahimi, M. Q.; Nazari, N. Z. Mechanical Properties of Bioplastic Form Cellulose Nanocrystal (CNC) Mangosteen Peel Using Glycerol as Plasticizer. J. Phys.: Conf. Ser. Nov 2019, 1349(1), 012099. DOI: 10.1088/1742-6596/1349/1/012099.
  • Boey, J. Y.; Lee, C. K.; Tay, G. S. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers (Basel). Sep 2022, 14(18), 3737. DOI: 10.3390/polym14183737.
  • Ilyas, R. A.; Sapuan, S. M.; Ishak, M. R.; Zainudin, E. S. Development and Characterization of Sugar Palm Nanocrystalline Cellulose Reinforced Sugar Palm Starch Bionanocomposites. Carbohydr. Polym. Dec 2018, 202, 186–202. DOI: 10.1016/j.carbpol.2018.09.002.
  • El Achaby, M.; Kassab, Z.; Barakat, A.; Aboulkas, A. Alfa Fibers as Viable Sustainable Source for Cellulose Nanocrystals Extraction: Application for Improving the Tensile Properties of Biopolymer Nanocomposite Films. Ind. Crops Prod. Feb 2018, 112, 499–510. DOI: 10.1016/j.indcrop.2017.12.049.
  • Gabriel, A. A.; Solikhah, A. F.; Rahmawati, A. Y. Tensile Strength and Elongation Testing for Starch-Based Bioplastics Using Melt Intercalation Method: A Review. J. Phys.: Conf. Ser. Apr 2021, 1858(1), 012028. DOI: 10.1088/1742-6596/1858/1/012028.
  • Lubis, M.; Harahap, M. B.; Ginting, M. H. S.; Sartika, M.; Hidayatul, A., “Effect of Microcrystalline Cellulose (MCC) from Sugar Palm Fibres and Glycerol Addition on Mechanical Properties of Bioplastic from Avocado Seed Starch (Persea Americana Mill),” in International Conference on “Engineering & Technology, Computer, Basics and Applied Sciences” ECBA, Academic Fora, Istanbul, Turkey, 2016.
  • Salari, M.; Sowti Khiabani, M.; Rezaei Mokarram, R.; Ghanbarzadeh, B.; Samadi Kafil, H. Development and Evaluation of Chitosan Based Active Nanocomposite Films Containing Bacterial Cellulose Nanocrystals and Silver Nanoparticles. Food Hydrocoll. Nov 2018, 84, 414–423. DOI: 10.1016/j.foodhyd.2018.05.037.
  • Chi, K.; Catchmark, J. M. Improved Eco-Friendly Barrier Materials Based on Crystalline Nanocellulose/Chitosan/Carboxymethyl Cellulose Polyelectrolyte Complexes. Food Hydrocoll. Jul 2018, 80, 195–205. DOI: 10.1016/j.foodhyd.2018.02.003.
  • Abe, M. M.; Martins, J. R.; Sanvezzo, P. B.; Macedo, J. V.; Branciforti, M. C.; Halley, P.; Botaro, V. R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers (Basel). Jul 2021, 13(15), 2484. DOI: 10.3390/polym13152484.
  • Ginting, M. H. S.; Lubis, M.; Sidabutar, T.; Sirait, T. P. The Effect of Increasing Chitosan on the Characteristics of Bioplastic from Starch Talas (Colocasia Esculenta) Using Plasticizer Sorbitol. IOP Conf. Ser. Earth Environ. Sci. Mar 2018, 126, 012147. DOI: 10.1088/1755-1315/126/1/012147.
  • Tamara, T.; Sumari, N.; Arni, S. Properties of Cassava Starch-Based Bioplastics and CMC with Sorbitol as a Plasticizer. IOP Conf. Ser. Earth Environ. Sci. Feb 2020, 456(1), 012077. DOI: 10.1088/1755-1315/456/1/012077.
  • Ratnawati, R.; Aisa, A.; Aryanti, N.; Kumoro, A. C. Glycerol and Temperature Effects on Mechanical Properties of Biodegradable Plastic from Rice Four with Rice Husk Filler. Chem. Eng. Trans. 2022, 95, 223–228. DOI: 10.3303/CET2295038.
  • Reddy, C. K.; Haripriya, S.; Noor Mohamed, A.; Suriya, M. Preparation and Characterization of Resistant Starch III from Elephant Foot Yam (Amorphophallus Paeonifolius) Starch. Food. Chem. Jul 2014, 155, 38–44. DOI: 10.1016/j.foodchem.2014.01.023.
  • Xu, Y.; Scales, A.; Jordan, K.; Kim, C.; Sismour, E. Starch Nanocomposite Films Incorporating Grape Pomace Extract and Cellulose Nanocrystal. J. Appl. Polym. Sci. Feb 2017, 134(6). DOI:10.1002/app.44438.
  • Bondancia, T. J.; De Aguiar, J.; Batista, G.; Cruz, A. J. G.; Marconcini, J. M.; Mattoso, L. H. C.; Farinas, C. S. Production of Nanocellulose Using Citric Acid in a Biorefinery Concept: Effect of the Hydrolysis Reaction Time and Techno-Economic Analysis. Ind. Eng. Chem. Res. 2020 Jun, 59(25), 11505–11516. DOI: 10.1021/acs.iecr.0c01359.