1,256
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of GABA (Gamma Amino Butyric Acid), antioxidant and sensory quality of modified Tempeh

, , , , , & show all
Pages 3532-3543 | Received 07 Sep 2023, Accepted 29 Nov 2023, Published online: 08 Dec 2023

References

  • Diez-Gutiérrez, L.; San Vicente, L.; Barrón, L. J. R.; Villarán, M. D.; Chávarri, M. Gamma-Aminobutyric Acid and Probiotics: Multiple Health Benefits and Their Future in the Global Functional Food and Nutraceuticals Market. J. Funct. Foods. 2020, 64, 64. DOI: 10.1016/j.jff.2019.103669.
  • Romulo, A.; Surya, R. Tempe: A Traditional Fermented Food of Indonesia and Its Health Benefits. Int. J. Gastronomy Food Sci. 2021, 26(100413), 1–9. DOI: 10.1016/j.ijgfs.2021.100413.
  • Handoyo, T.; Morita, N. Structural and Functional Properties of Fermented Soybean (Tempeh) by Using Rhizopus Oligosporus. Int. J. Food. Prop. 2006, 9(2), 347–355. DOI: 10.1080/10942910500224746.
  • Syukri, D.; Sylvi, D. S.; Fitri, S. Effect of Various Cooking Methods on Quality and Sensory Characteristics of Tempeh Made from Soybeans and Corn. And. Int. J. Agric. Nat. Sci. 2022, 3(2), 87–113. DOI: 10.25077/aijans.v3.i02.87-113.2022.
  • Huo, D.; Tang, J.; Feng, Q.; Niu, Z.; Shen, Q.; Wang, L.; Zhou, S. Gamma-Aminobutyric Acid (GABA): A Comprehensive Review of Dietary Sources, Enrichment Technologies, Processing Effects, Health Benefits, and Its Applications. Crit. Rev. Food Sci. Nutr. 2023, 1–23. DOI: 10.1080/10408398.2023.2204373.
  • Luo, H.; Liu, Z.; Xie, F.; Bilal, M.; Liu, L.; Yang, R.; Wang, Z. Microbial Production of Gamma-Aminobutyric Acid: Applications, State-Of-The-Art Achievements, and Future Perspectives. Crit. rev. biotechnol. 2021, 41(4), 491–512. DOI: 10.1080/07388551.2020.1869688.
  • Hepsomali, P.; Groeger, J. A.; Nishihira, J.; Scholey, A. Effects of Oral Gamma-Aminobutyric Acid (GABA) Administration on Stress and Sleep in Humans: A Systematic Review. Front. Neurosci. 2020, 14, 923. DOI: 10.3389/fnins.2020.00923.
  • Nakatani, Y.; Fukaya, T.; Kishino, S.; Ogawa, J. Production of GABA-Enriched Tomato Juice by Lactiplantibacillus plantarum KB1253. J. Biosci. Bioeng. 2022, 134(5), 424–431. DOI: 10.1016/j.jbiosc.2022.08.008.
  • Park, S. Y.; Lee, J. W.; Lim, S. D. The Probiotic Characteristics and GABA Production of Lactobacillus Plantarum K154 Isolated from Kimchi. Food Sci. Biotechnol. 2014, 23(6), 1951–1957. DOI: 10.1007/s10068-014-0266-2.
  • Binh, T. T. T.; Ju, W.-T.; Jung, W.-J.; Park, R.-D. Optimization of γ-Amino Butyric Acid Production in a Newly Isolated Lactobacillus Brevis. Biotechnol. Lett. 2014, 36(1), 93–98. DOI: 10.1007/s10529-013-1326-z.
  • Gangaraju, D.; Murty, V. R.; Prapulla, S. G. Probiotic-mediated biotransformation of monosodium glutamate to γ-aminobutyric acid: Differential production in complex and minimal media and kinetic modelling. Ann. Microbiol. 2014, 64(1), 229–237. DOI: 10.1007/s13213-013-0655-4.
  • Yi Song, H.; Yu Chui, R. Optimization of Culture Conditions for Gamma-Aminobutyric Acid Production in Fermented Adzuki Bean Milk. J. Food Drug Anal. 2017, 26(1), 74–81. DOI: 10.1016/j.jfda.2016.11.024.
  • Lin, Q.; Li, D.; Qin, H. Molecular cloning, expression, and immobilization of glutamate decarboxylase from Lactobacillus fermentum YS2. Electron. J. Biotechnol. 2017, 27, 8–13. DOI: 10.1016/j.ejbt.2017.03.002.
  • Strandwitz, P.; Kim, K. H.; Terekhova, D.; Liu, J. K.; Sharma, A.; Levering, J.; Lewis, K. GABA-Modulating Bacteria of the Human Gut Microbiota. Nat. Microbiol. 2019, 4(3), 396–403. DOI: 10.1038/s41564-018-0307-3.
  • Kim, J. A.; Park, M. S.; Kang, S. A.; Ji, G. E. Production of γ-aminobutyric acid during fermentation of Gastrodia elata Bl. by co-culture of Lactobacillus brevis GABA 100 with Bifidobacterium bifidum BGN4. Food Sci. Biotechnol. 2014, 23(2), 459–466. DOI: 10.1007/s10068-014-0063-y.
  • Zhang, Q.; Xiang, J.; Zhang, L.; Zhu, X.; Evers, J.; van der Werf, W.; Duan, L. Optimizing Soaking and Germination Conditions to Improve Gamma-Aminobutyric Acid Content in Japonica and Indica Germinated Brown Rice. J. Funct. Foods. 2014, 10, 283–291. DOI: 10.1016/j.jff.2014.06.009.
  • Kitaoka, S.; Nakano, Y. Colorimetric determination of ω-amino acids. J. Biochem. 1969, 66(1), 87–94. DOI: 10.1093/oxfordjournals.jbchem.a129124.
  • Marinova, D.; Ribarova, F.; Atanassova, M. Total Phenolic and Total Flavonoids in Bulgarian Fruits and Vegetables. J. Univ. Chem. Technol. Metall. 2005, 40(3), 255–260.
  • Lin, L. Y.; Liu, H. M.; Yu, Y. W.; Lin, S. D.; Mau, J. L. Quality and Antioxidant Property of Buckwheat Enhanced Wheat Bread, Food Chemistry. Food Chem. 2009, 112(4), 987–991. DOI: 10.1016/j.foodchem.2008.07.022.
  • Selimovic, A.; Milicevic, D.; Jasic, M.; Selimovic, A.; Ackar, D.; Pesic, T. The Effect of Baking Temperature and Buckwheat Flour Addition on the Selected Properties of Wheat Bread. Croat. J. Food Sci. Technol. 2014, 6(1), 43–50.
  • Aoki, H.; Uda, I.; Tagami, K.; FURUYA, Y.; ENDO, Y.; FUJIMOTO, K. The Production of a New Tempeh-Like Fermented Soybean Containing a High Level of γ-Aminobutyric Acid by Anaerobic Incubation with Rhizopus. Biosci. Biotechnol., Biochem. 2023, 67(5), 1018–1023. DOI: 10.1271/bbb.67.1018.
  • Santos-Espinosa, A.; Beltrán-Barrientos, L. M.; Reyes-Díaz, R.; Mazorra-Manzano, M. Á.; Hernández-Mendoza, A.; González-Aguilar, G. A.; Sáyago-Ayerdi, S. G.; Vallejo-Cordoba, B.; González-Córdova, A. F. Gamma-Aminobutyric Acid (GABA) Production in Milk Fermented by Specific Wild Lactic Acid Bacteria Strains Isolated from Artisanal Mexican Cheeses. Ann. Microbiol. 2020, 70(1), 1–11. DOI: 10.1186/s13213-020-01542-3.
  • Shuen, G. W.; Yi, L. Y.; Ying, T. S.; Von, G. C. Y.; Yusof, Y. A. B.; Phing, P. L. Effects of Drying Methods on the Physicochemical Properties and Antioxidant Capacity of Kuini Powder. Braz. J. Food Technol. 2021, 24, 1–14. DOI: 10.1590/1981-6723.08620.
  • Saharan, P.; Sadh, P. K.; Singh Duhan, J. Comparative Assessment of Effect of Fermentation on Phenolics, Flavanoids and Free Radical Scavenging Activity of Commonly Used Cereals. Biocatal Agric. Biotechnol. 2017, 12, 236–240. DOI: 10.1016/j.bcab.2017.10.013.
  • Arinanti, M. Potensi senyawa antioksidan alami pada berbagai jenis kacang. Ilmu. Gizi. Indones. 2018, 1(2), 134. DOI: 10.35842/ilgi.v1i2.7.
  • Xu, D. P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J. J.; Li, H. B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18(96), 1–32. DOI: 10.3390/ijms18010096.
  • Oprica, L.; Antohe, R. G.; Verdes, A.; Grigore, M. N. Effect of Freeze-Drying and Oven-Drying Methods on Flavonoids Content in Two Romanian Grape Varieties. Rev. Chim. 2019, 70(2), 491–494. DOI: 10.37358/RC.19.2.6941.
  • Yudiono, K.; Ayu, W. C.; Susilowati, S. Antioxidant activity, total phenolic, and aflatoxin contamination in Tempeh made from assorted soybeans (Glycine max l merill). Food Res. 2021, 2021(5), 393–398. DOI: 10.26656/fr.2017.5(3).655.
  • Cooper, D.; Doucet, L.; Pratt, M. Understanding ‘appropriateness’ in multinational organizations. J. Organ. Behav. 2007, 28(3), 303–325. DOI: 10.1002/job.440.
  • Molyneux, P. The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant. Songklanakarin J. Sci. Technol. 2004, 26, 211–19.
  • Widiany, F. L.; Metty, M.; Widaryanti, R.; Azizah, S. N. Comparison of IC50 Antioxidant Analysis of Local Soybean Tempeh and Imported Soybean Tempeh in Indonesia. Int J Nutr Sci. 2022, 7(4), 241–244.
  • Niamnuy, C.; Charoenchaitrakool, M.; Mayachiew, P.; Devahastin, S. Bioactive Compounds and Bioactivities of Centella Asiatica (L.) Urban Prepared by Different Drying Methods and Conditions. Drying Technol. 2013, 31(16), 2007–2015. DOI: 10.1080/07373937.2013.839563.
  • Kusuma, I. G. N. S.; Putra, I. N. K.; Darmayanti, L. P. T. Pengaruh suhu pengeringan terhadap aktivitas antioksidan teh herbal kulit kakao (Theobroma cacao L.). Jurnal Ilmu dan Teknologi Pangan. 2019, 8(1), 85–93. DOI: 10.24843/itepa.2019.v08.i01.p10.
  • Barus, T.; Titarsole, N. N.; Mulyono, N.; Prasasty, V. D. Tempeh Antioxidant Activity Using DPPH Method: Effects of Fermentation, Processing, and Microorganisms. J. Food Eng. Tech. 2019, 8(2), 75–80. DOI: 10.32732/jfet.2019.8.2.75.
  • Vaya, J.; Aviram, M. Nutritional Antioxidants Mechanisms of Action, Analyses of Activities and Medical Applications. Curr. Med. Chem.-Immunol, Endoc. Metab. Agents. 2001, 1(1), 99–117. DOI: 10.2174/1568013013359168.
  • Wang, Y. C.; Yu, R. C.; Chou, C. C. Antioxidative Activities of Soymilk Fermented with Lactic Acid Bacteria and Bifidobacteria. Food Microbiol. 2006, 23(2), 128–135. DOI: 10.1016/j.fm.2005.01.020.
  • Liu, Y.; Gu, P.; Laaksonen, O.; Wei, B.; Zhu, Y.; Zhang, B.; Zhu, B.; Li, H. LAB Incubation and Aging Drives Flavor Enhancement of Goji Berry Juice. J. Food Compost. Anal. 2022, 105, 104202. DOI: 10.1016/j.jfca.2021.104202.
  • Syida, W. S. W. K.; Noriham, A.; Normah, I.; Mohd Yusuf, M. Changes in Chemical Composition and Amino Acid Content of Soy Protein Isolate (SPI) from Tempeh. Int. Food Res. J. 2018, 25(4), 1528–1533.
  • Cahyani, R. T.; Bija, S.; Sugi, L. T. N. Karakteristik ikan bulan-bulan (Megalops cyprinoides) dan potensinya sebagai tepung untuk fortifikasi pangan. Teknologi Pangan. 2020, 11(2), 182–191. DOI: 10.35891/tp.v11i2.2030.
  • Osman, A.; El-Wabab, A. A.; Ahmed, M. F. E.; Buschmann, M.; Visscher, C.; Hartung, C. B.; Lingens, J. B. Nutrient Composition and in vitro Fermentation Characteristics of Sorghum Depending on Variety and Year of Cultivation in Northern Italy. Foods. 2022, 11(20), 3255. DOI: 10.3390/foods11203255.
  • Elobuike, C. S.; Idowu, M. A.; Adeola, A. A.; Bakare, H. A. Nutritional and Functional Attributes of Mungbean (Vigna Radiata [L] Wilczek) Flour as Affected by Sprouting Time. Legume Sci. 2021, 3(100), 1–11. DOI: 10.1002/leg3.100.
  • Mubarak, A. E. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 2005, 89(4), 489–495. DOI: 10.1016/j.foodchem.2004.01.007.