745
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances for anti-inflammatory ingredients and activities of Fuzi (lateral root of Aconitum carmichaelii Debx.)

, , , , , , & show all
Pages 53-70 | Received 11 Aug 2023, Accepted 06 Dec 2023, Published online: 19 Dec 2023

References

  • Arango Duque, G.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 491. DOI: 10.3389/fimmu.2014.00491.
  • Krishnamoorthy, S.; Honn, K. V. Inflammation and disease progression. Cancer Metastasis Rev. 2006, 25(3), 481–491. DOI: 10.1007/s10555-006-9016-0.
  • Fiordelisi, A.; Iaccarino, G.; Morisco, C.; Coscioni, E.; Sorriento, D. NFkappaB is a Key Player in the Crosstalk Between Inflammation and Cardiovascular Diseases. Int. J. Mol. Sci. 2019, 20(7), 1599. DOI: 10.3390/ijms20071599.
  • Rohm, T. V.; Meier, D. T.; Olefsky, J. M.; Donath, M. Y. Inflammation in Obesity, Diabetes, and Related Disorders. Immunity. 2022, 55(1), 31–55. DOI: 10.1016/j.immuni.2021.12.013.
  • Hasheminasabgorji, E.; Jha, J. C. Dyslipidemia, Diabetes and Atherosclerosis: Role of Inflammation and ROS-Redox-Sensitive Factors. Biomedicines. 2021, 9(11), 1602. DOI: 10.3390/biomedicines9111602.
  • Jayaraman, A.; Lent-Schochet, D.; Pike, C. J. Diet-Induced Obesity and Low Testosterone Increase Neuroinflammation and Impair Neural Function. J. Neuroinflammation. 2014, 11(1), 11 1–14. DOI: 10.1186/s12974-014-0162-y.
  • Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Sci. 2013, 16(5), 821–847. DOI: 10.18433/J3VW2F.
  • Agbabiaka, T. B.; Spencer, N. H.; Khanom, S.; Goodman, C. Prevalence of Drug–Herb and Drug–Supplement Interactions in Older Adults: A Cross-Sectional Survey. Br. J. Gen. Pract. 2018, 68(675), e711–e717. DOI: 10.3399/bjgp18X699101.
  • Tai, C.-J.; El-Shazly, M.; Tsai, Y.-H.; Csupor, D.; Hohmann, J.; Wu, Y.-C.; Tseng, T.-G.; Chang, F.-R.; Wang, H.-C. Uncovering Modern Clinical Applications of Fuzi and Fuzi-Based Formulas: A Nationwide Descriptive Study with Market Basket Analysis. Front. Pharmacol. 2021, 12, 641530. DOI: 10.3389/fphar.2021.641530.
  • Xie, Y. F.; Feng, W. W.; Liu, M. C.; Xie, J.; Yu, L.; Gong, X.-H.; Li, Y.-X.; Peng, C. Investigation of Efficacy Enhancing and Toxicity Reducing Mechanism of Combination of Aconiti Lateralis Radix Praeparata and Paeoniae Radix Alba in Adjuvant-Induced Arthritis Rats by Metabolomics. Evid. Based Complement. Alternat. Med. 2019, 2019, 1–15. DOI: 10.1155/2019/9864841.
  • Zhen, Z.; Xia, L.; You, H.; Jingwei, Z.; Shasha, Y.; Xinyi, W.; Wenjing, L.; Xin, Z.; Chaomei, F. An Integrated Gut Microbiota and Network Pharmacology Study on Fuzi-Lizhong Pill for Treating Diarrhea-Predominant Irritable Bowel Syndrome. Front. Pharmacol. 2021, 12, 746923. DOI: 10.3389/fphar.2021.746923.
  • Chen, Z.; Zhou, L.; Ge, Y.; Chen, J.; Du, W.; Xiao, L.; Tong, P.; Huang, J.; Shan, L.; Efferth, T. Fuzi Decoction Ameliorates Pain and Cartilage Degeneration of Osteoarthritic Rats Through Pi3K-Akt Signaling Pathway and Its Clinical Retrospective Evidence. Phytomedicine. 2022, 100, 154071. DOI: 10.1016/j.phymed.2022.154071.
  • Guo, C.; He, L.; Hu, N.; Zhao, X.; Gong, L.; Wang, C.; Peng, C.; Li, Y. Aconiti Lateralis Radix Praeparata Lipid-Soluble Alkaloids Alleviates IL-1β-Induced Inflammation of Human Fibroblast-Like Synoviocytes in Rheumatoid Arthritis by Inhibiting NF-Κb and MAPKs Signaling Pathways and Inducing Apoptosis. Cytokine. 2022, 151, 151 155809. DOI: 10.1016/j.cyto.2022.155809.
  • Wang, Z.; Wen, J.; Xing, J.; He, Y. Quantitative Determination of Diterpenoid Alkaloids in Four Species of Aconitum by HPLC. J. Pharm. Biomed. Anal. 2006, 40(4), 1031–1034. DOI: 10.1016/j.jpba.2005.08.012.
  • Huang, C.; Dong, J.; Jin, X.; Ma, H.; Zhang, D.; Wang, F.; Cheng, L.; Feng, Y.; Xiong, X.; Jiang, J. Intestinal Anti-Inflammatory Effects of Fuzi-Ganjiang Herb Pair Against DSS-Induced Ulcerative Colitis in Mice. J. Ethnopharmacol. 2020, 261, 261 112951. DOI: 10.1016/j.jep.2020.112951.
  • Wang, J.; Qiao, L.-F.; Yang, G.-T. Role of Shenfu Injection in Rats with Systemic Inflammatory Response Syndrome. Chin. J. Integr. Med. 2008, 14, 51–55.
  • Liu, X.; Liu, R.; Dai, Z.; Wu, H.; Lin, M.; Tian, F.; Gao, Z.; Zhao, X.; Sun, Y.; Pu, X. Effect of Shenfu Injection on Lipopolysaccharide (LPS)-Induced Septic Shock in Rabbits. J. Ethnopharmacol. 2019, 234, 234 36–43. DOI: 10.1016/j.jep.2019.01.008.
  • Liu, M.; Yang, J.; Qian, S.; Sun, Z.; Jin, Y.; Liu, X.; Ye, D.; Rong, R.; Yang, Y. Mahuang Xixin Fuzi Decoction Protects the Balb/c-Nude Mice Infected with Influenza a Virus by Reducing Inflammatory Cytokines Storm and Weakly Regulating SIgA Immune Response. J. Ethnopharmacol. 2023, 304, 304 116070. DOI: 10.1016/j.jep.2022.116070.
  • Rong, R.; Li, R.-R.; Hou, Y.-B.; Li, J.; Ding, J.-X.; Zhang, C.-B.; Yang, Y. Mahuang-Xixin-Fuzi Decoction Reduces the Infection of Influenza a Virus in Kidney-Yang Deficiency Syndrome Mice. J. Ethnopharmacol. 2016, 192, 192 217–224. DOI: 10.1016/j.jep.2016.07.017.
  • Shi, L.; Zhao, Y.; Feng, C.; Miao, F.; Dong, L.; Wang, T.; Stalin, A.; Zhang, J.; Tu, J.; Liu, K. Therapeutic Effects of Shaogan Fuzi Decoction in Rheumatoid Arthritis: Network Pharmacology and Experimental Validation. Front. Pharmacol. 2022, 13, 967164. DOI: 10.3389/fphar.2022.967164.
  • Wang, K.-X.; Gao, Y.; Lu, C.; Li, Y.; Zhou, B.-Y.; Qin, X.-M.; Du, G.-H.; Gao, L.; Guan, D.-G.; Lu, A.-P. Uncovering the Complexity Mechanism of Different Formulas Treatment for Rheumatoid Arthritis Based on a Novel Network Pharmacology Model. Front. Pharmacol. 2020, 11, 1035. DOI: 10.3389/fphar.2020.01035.
  • Gao, Y.; Dai, H.; Zhang, N.; Jiang, H.; Zhang, Z.; Feng, Z.; Dong, Z.; Liu, W.; Liu, F.; Dong, X., et al. The Ameliorative Effect of Mahuang Fuzi and Shenzhuo Decoction on Membranous Nephropathy of Rodent Model is Associated with Autophagy and wnt/β-Catenin Pathway. Front. Pharmacol. 2022, 13, 1157. DOI: 10.3389/fphar.2022.820130.
  • Sun, F.; Huang, Y.; Li, L.; Wang, Y.; Zhuang, P.; Zhang, Y. PKA/β2-AR-Gs/gi Signaling Pathway is Associated with Anti-Inflammatory and Pro-Apoptotic Effects of Fuzi and Banxia Combination on Rats Subjected to Pressure Overload. J. Ethnopharmacol. 2019, 235, 235 375–384. DOI: 10.1016/j.jep.2019.02.011.
  • Lu, X.; Zhan, L.; Kang, X.; Liu, L.; Li, Y.; Yu, J.; Fan, Z.; Bai, L.; Ji, C.; Wang, X. Clinical research of Dahuang Fuzi decoction in auxiliary treatment of severe acute pancreatitis: a multi-center observation in 206 patients. Chin. Crit. Care Med. 2010, 22(12), 723–8.
  • Liu, M.; Wang, Z.; Liu, X.; Xiao, H.; Liu, Y.; Wang, J.; Chen, C.; Wang, X.; Liu, W.; Xiang, Z. Therapeutic effect of Yiyi Fuzi Baijiang formula on TNBS-induced ulcerative colitis via metabolism and Th17/Treg cell balance. J. Ethnopharmacol. 2023, 309, 309 116301. DOI: 10.1016/j.jep.2023.116301.
  • He, G.; Wang, X.; Liu, W.; Li, Y.; Shao, Y.; Liu, W.; Liang, X.; Bao, X. Chemical constituents, pharmacological effects, toxicology, processing and compatibility of Fuzi (lateral root of Aconitum carmichaelii Debx): A review. J. Ethnopharmacol. 2023, 307, 116160. DOI: 10.1016/j.jep.2023.116160.
  • Huang, C.; Dong, J.; Cheng, L.; Ma, H.; Wang, F.; Feng, Y.; Zhang, S.; Li, Y.; Zhang, D.; Jin, X. Alkaloids from aconitum carmichaelii alleviates DSS-induced ulcerative colitis in mice via MAPK/NF-κB/STAT3 signaling inhibition. Evid. Based Complement. Alternat. Med. 2022, 2022, 1–17. DOI: 10.1155/2022/6257778.
  • Li, X.; Wang, X.; Li, Z.; Mao, Y.; Liu, Z.; Liu, X.; Zhu, X.; Zhang, J. A Metabolomic Study of the Analgesic Effect of Lappaconitine Hydrobromide (LAH) on Inflammatory Pain. Metabolites. 2022, 12(10), 923. DOI: 10.3390/metabo12100923.
  • Pang, L.; Liu, C.-Y.; Gong, G.-H.; Quan, Z.-S. Synthesis, in vitro and in vivo Biological Evaluation of Novel Lappaconitine Derivatives as Potential Anti-Inflammatory Agents. Acta Pharm. Sin. B. 2020, 10(4), 628–645. DOI: 10.1016/j.apsb.2019.09.002.
  • Wangchuk, P.; Navarro, S.; Shepherd, C.; Keller, P. A.; Pyne, S. G.; Loukas, A. Diterpenoid Alkaloids of Aconitum Laciniatum and Mitigation of Inflammation by 14-O-Acetylneoline in a Murine Model of Ulcerative Colitis. Sci. Rep. 2015, 5(1), 12845. DOI: 10.1038/srep12845.
  • Taki, M.; Niitu, K.; Omiya, Y.; Noguchi, M.; Fukuchi, M.; Aburada, M.; Okada, M. 8-O-Cinnamoylneoline, a New Alkaloid from the Flower Buds of Aconitum Carmichaeli and Its Toxic and Analgesic Activities. Planta. med. 2003, 69(9), 800–803.
  • Hiroshi, H.; Hiroshi, T.; Mitsuo, F.; Chohachi, K.; Kazuo, O. Mechanism of Inhibitory Action of Mesaconitine in Acute Inflammations. Eur. J. Pharmacol. 1982, 82(1–2), 65–71. DOI: 10.1016/0014-2999(82)90553-2.
  • Nesterova, Y. V.; Povetieva, T.; Suslov, N.; Zyuz’kov, G.; Aksinenko, S.; Pushkarskii, S.; Krapivin, A. Anti-Inflammatory Activity of Diterpene Alkaloids from Aconitum Baikalense. Bull. Exp. Biol. Med. 2014, 156(5), 665. DOI: 10.1007/s10517-014-2421-4.
  • Li, Y.; Wang, Y.; Yang, B.; Wang, Y.; Hou, Z.; Li, A.; Xu, Y.; Ju, L.; Wu, H.; Zhang, Y. A Practical and Novel “Standard addition” Strategy to Screen Pharmacodynamic Components in Traditional Chinese Medicine Using Heishunpian as an Example. R.S.C. Adv. 2015, 5(28), 22209–22216. DOI: 10.1039/C5RA00461F.
  • Wang, D.-P.; Lou, H.-Y.; Huang, L.; Hao, X.-J.; Liang, G.-Y.; Yang, Z.-C.; Pan, W.-D. A Novel Franchetine Type Norditerpenoid Isolated from the Roots of Aconitum Carmichaeli Debx. with Potential Analgesic Activity and Less Toxicity. Bioorg. Med. Chem. Lett. 2012, 22(13), 4444–4446. DOI: 10.1016/j.bmcl.2012.04.132.
  • Gao, X.; Li, P.; Wang, T.; Lv, B.; Jiang, X. Identification of NF-Kappa B Inhibitors Following Shenfu Injection and Bioactivity-Integrated UPLC/Q-TOF-MS and Screening for Related Anti-Inflammatory Targets in vitro and in silico. J. Ethnopharmacol. 2016, 194, 658–667. DOI: 10.1016/j.jep.2016.10.052.
  • Shao, S.; Xi, A. H.; Hu, M.; Chen, C.; Fu, J.; Sh, I. G.; Guo, Q.; Zhou, Y.; Wang, W.; Shi, J. Isotalatizidine, a C19-Diterpenoid Alkaloid, Attenuates Chronic Neuropathic Pain Through Stimulating ERK/CREB Signaling Pathway-Mediated Microglial Dynorphin a Expression. J. Neuroinflammation. 2020, 17(1), 1–11. DOI: 10.1186/s12974-019-1696-9.
  • Wang, Y.; Yang, H.; Zhang, J.; Yin, H. Identification of the Absorbed Components of Raw Fuzi (Lateral Root of Aconitum Carmichaelii Debx.) in a Rat Adjuvant Arthritis Model. Indian J. Pharm. Sci. 2022, 84(5), 1241–1247. DOI: 10.36468/pharmaceutical-sciences.1020.
  • Zhou, C.; Gao, J.; Qu, H.; Xu, L.; Zhang, B.; Guo, Q.; Jing, F. Anti-inflammatory Mechanism of Action of Benzoylmesaconine in Lipopolysaccharide-Stimulated RAW264. 7 Cells. Evid. Based Complement. Alternat. Med. 2022, 2022, 1–12. DOI: 10.1155/2022/7008907.
  • Zhou, C.; Gao, J.; Ji, H.; Li, W.; Xing, X.; Liu, D.; Guo, Q.; Zhou, L.; Jing, F. Benzoylaconine Modulates LPS-Induced Responses Through Inhibition of Toll-Like Receptor-Mediated NF-Κb and MAPK Signaling in RAW264. 7 Cells. Inflammation. 2021, 44(5), 2018–2032. DOI: 10.1007/s10753-021-01478-z.
  • Zhang, Y.-Y.; Yao, Y.-D.; Cheng, Q.-Q.; Huang, Y.-F.; Zhou, H. Establishment of a High Content Image Platform to Measure NF-Κb Nuclear Translocation in LPS-Induced RAW264. 7 Macrophages for Screening Anti-Inflammatory Drug Candidates. Curr. Drug Metab. 2022, 23(5), 394–414. DOI: 10.2174/1389200223666220411121614.
  • Zeng, X.-Z.; He, L.-G.; Wang, S.; Wang, K.; Zhang, Y.-T.; Tao, L.; Li, X.-J.; Liu, S.-W. Aconine Inhibits RANKL-Induced Osteoclast Differentiation in RAW264. 7 Cells by Suppressing NF-Κb and NFATc1 Activation and DC-STAMP Expression. Acta. Pharmacol. Sin. 2016, 37(2), 255–263. DOI: 10.1038/aps.2015.85.
  • Saito, H.; Ueyama, T.; Naka, N.; Yagi, J.; Okamoto, T. Pharmacological Studies of Ignavine, an Aconitum Alkaloid. Chem. Pharm. Bull. (Tokyo). 1982, 30(5), 1844–1850. DOI: 10.1248/cpb.30.1844.
  • Cui, H.; Chen, X.; Chen, X.; He, J.; Zhu, L.; Liu, Z.; Zhao, Z. Diterpenoids with anti-inflammatory activity from the lateral root of Aconitum carmichaelii debeaux. Phytochemistry. 2022, 204, 204 113455. DOI: 10.1016/j.phytochem.2022.113455.
  • Bai, X.; Ding, W.; Yang, S.; Guo, X. Higenamine Inhibits IL-1β-Induced Inflammation in Human Nucleus Pulposus Cells. Biosci. Rep. 2019, 39(6). DOI: 10.1042/BSR20190857.
  • Yang, S.; Chu, S.; Ai, Q.; Zhang, Z.; Gao, Y.; Lin, M.; Liu, Y.; Hu, Y.; Li, X.; Peng, Y. Anti-Inflammatory Effects of Higenamine (Hig) on LPS-Activated Mouse Microglia (BV2) Through NF-Κb and Nrf2/HO-1 Signaling Pathways. Int. Immunopharmacol. 2020, 85, 106629. DOI: 10.1016/j.intimp.2020.106629.
  • Duan, W.; Chen, J.; Wu, Y.; Zhang, Y.; Xu, Y. Protective Effect of Higenamine Ameliorates Collagen‑Induced Arthritis Through Heme Oxygenase‑1 and PI3K/Akt/Nrf‑2 Signaling Pathways. Exp. Ther. Med. 2016, 12(5), 3107–3112. DOI: 10.3892/etm.2016.3730.
  • Jang, J.; Kim, S.-M.; Yee, S.-M.; Kim, E.-M.; Lee, E.-H.; Choi, H.-R.; Lee, Y.-S.; Yang, W.-K.; Kim, H.-Y.; Kim, K.-H. Daucosterol suppresses dextran sulfate sodium (DSS)-induced colitis in mice. Int. Immunopharmacol. 2019, 72, 124–130. DOI: 10.1016/j.intimp.2019.03.062.
  • Kong, S.; Li, P.; Verpoorte, R.; Li, M.; Dai, Y. Chemical and Pharmacological Difference Between Honey-Fried Licorice and Fried Licorice. J. Ethnopharmacol. 2023, 302, 115841. DOI: 10.1016/j.jep.2022.115841.
  • Wang, J.; Jiang, W.; Wang, Y. Anti-Inflammation of Flavonoid Compounds from Dalbergia Odorifera T. Chen in Lipopolysaccharide Stimulated RAW264. 7 Macrophages. Chin. J. Cell. Mol. Immunol. 2013, 29(7), 681–684.
  • Yu, J.-Y.; Ha, J.-Y.; Kim, K.-M.; Jung, Y.-S.; Jung, J.-C.; Oh, S. Anti-inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules. 2015, 20(7), 13041–13054. DOI: 10.3390/molecules200713041.
  • Song, Y.-X.; Ou, Y.-M.; Zhou, J.-Y. Gracillin Inhibits Apoptosis and Inflammation Induced by Lipopolysaccharide (LPS) to Alleviate Cardiac Injury in Mice via Improving MiR-29a. Biochem. Biophys. Res. Commun. 2020, 523(3), 580–587. DOI: 10.1016/j.bbrc.2019.11.129.
  • Lu, S.; Wang, S. Clinical control study of lappaconitine vs morphine for postoperative epidural analgesia. Chin. J. New Drugs Clin. Remedies. 2004, 23(8), 497–499.
  • Ou, S.; Zhao, Y.-D.; Xiao, Z.; Wen, H.-Z.; Cui, J.; Ruan, H.-Z. Effect of Lappaconitine on Neuropathic Pain Mediated by P2X3 Receptor in Rat Dorsal Root Ganglion. Neurochem. Int. 2011, 58(5), 564–573. DOI: 10.1016/j.neuint.2011.01.016.
  • Wright, S. N. Irreversible Block of Human Heart (hH1) Sodium Channels by the Plant Alkaloid Lappaconitine. Mol. Pharmacol. 2001, 59(2), 183–192. DOI: 10.1124/mol.59.2.183.
  • Wang, Y.-Z.; Xiao, Y.-Q.; Zhang, C.; Sun, X.-M. Study of Analgesic and Anti-Inflammatory Effects of Lappaconitine Gelata. J. Tradit. Chin. Med. 2009, 29(2), 141–145. DOI: 10.1016/S0254-6272(09)60051-0.
  • Yang, C.; Wei, Z.; Zhang, T.; Zeng, X.; Wu, B. Effects of Lappaconitine on Pain and Inflammatory Response of Severely Burned Rats and the Mechanism. Chin. J. Burns. 2017, 33(6), 374–380. DOI: 10.3760/cma.j.issn.1009-2587.2017.06.017.
  • Ameri, A. The Effects of Aconitum Alkaloids on the Central Nervous System. Prog. Neurobiol. 1998, 56(2), 211–235. DOI: 10.1016/S0301-0082(98)00037-9.
  • Gao, F.; Li, Y.-Y.; Wang, D.; Huang, X.; Liu, Q. Diterpenoid Alkaloids from the Chinese Traditional Herbal “Fuzi” and Their Cytotoxic Activity. Molecules. 2012, 17(5), 5187–5194. DOI: 10.3390/molecules17055187.
  • Qin, Y.; Wang, J.-B.; Zhao, Y.-L.; Shan, L.-M.; Li, B.-C.; Fang, F.; Jin, C.; Xiao, X.-H. Establishment of a Bioassay for the Toxicity Evaluation and Quality Control of Aconitum Herbs. J. Hazard. Mater. 2012, 199-200, 199 350–357. DOI: 10.1016/j.jhazmat.2011.11.029.
  • Tong, P.; Wu, C.; Wang, X.; Hu, H.; Jin, H.; Li, C.; Zhu, Y.; Shan, L.; Xiao, L. Development and Assessment of a Complete-Detoxication Strategy for Fuzi (Lateral Root of Aconitum Carmichaeli) and Its Application in Rheumatoid Arthritis Therapy. J. Ethnopharmacol. 2013, 146(2), 562–571. DOI: 10.1016/j.jep.2013.01.025.
  • Shen, Y.; Zuo, A. X.; Jiang, Z. Y.; Zhang, X. M.; Wang, H. L.; Chen, J. J. Two New C20‐Diterpenoid Alkaloids from Aconitum carmichaelii. Helv. Chim. Acta. 2011, 94(1), 122–126. DOI: 10.1002/hlca.201000152.
  • Xiong, L.; Peng, C.; Xie, X.-F.; Guo, L.; He, C.-J.; Geng, Z.; Wan, F.; Dai, O.; Zhou, Q.-M. Alkaloids Isolated from the Lateral Root of Aconitum Carmichaelii. Molecules. 2012, 17(8), 9939–9946. DOI: 10.3390/molecules17089939.
  • Meng, X.-H.; Jiang, Z.-B.; Guo, Q.-L.; Shi, J.-G. A minor arcutine-type C20-diterpenoid alkaloid iminium constituent of “fu zi”. Chin. Chem. Lett. 2017, 28(3), 588–592. DOI: 10.1016/j.cclet.2016.11.010.
  • Yin, T.; Zhang, H.; Zhang, W.; Jiang, Z. Chemistry and Biological Activities of Hetisine-Type Diterpenoid Alkaloids. R.S.C. Adv. 2021, 11(57), 36023–36033. DOI: 10.1039/D1RA07173D.
  • Yu, H. J.; Liang, T. T. A New Alkaloid from the Roots of Aconitum Carmichaeli Debx. J. Chin. Chem. Soc. 2012, 59(6), 693–695. DOI: 10.1002/jccs.201200077.
  • Liu, H.; Wu, Y.; Guo, Q.; Shao, S.; Xu, C.; Zhang, T.; Shi, J. Aconapelsulfonines a and B, Seco C20-Diterpenoid Alkaloids Deriving via Criegee Rearrangements of Napelline Skeleton from Aconitum Carmichaelii. Chin. Chem. Lett. 2021, 32(1), 33–36. DOI: 10.1016/j.cclet.2020.09.062.
  • Liang, Y.; Wu, J.-L.; Li, X.; Guo, M.-Q.; Leung, E. L.-H.; Zhou, H.; Liu, L.; Li, N. Anti-Cancer and Anti-Inflammatory New Vakognavine-Type Alkaloid from the Roots of Aconitum Carmichaelii. Tetrahedron Lett. 2016, 57(52), 5881–5884. DOI: 10.1016/j.tetlet.2016.11.065.
  • Park, J. E.; Kang, Y. J.; Park, M. K.; Lee, Y. S.; Kim, H. J.; Seo, H. G.; Lee, J. H.; Sook, Y.-C. H.; Shin, J. S.; Lee, H. W. Enantiomers of Higenamine Inhibit LPS-Induced iNOS in a Macrophage Cell Line and Improve the Survival of Mice with Experimental Endotoxemia. Int. Immunopharmacol. 2006, 6(2), 226–233. DOI: 10.1016/j.intimp.2005.08.007.
  • Zhao, C.; Li, M.; Luo, Y.; Wu, W. Isolation and Structural Characterization of an Immunostimulating Polysaccharide from Fuzi, Aconitum Carmichaeli. Carbohydr. Res. 2006, 341(4), 485–491. DOI: 10.1016/j.carres.2005.11.032.
  • Hu, Q.; Liu, Y.; Yu, J.; Yang, X.; Yang, M.; He, Y.; Han, L.; Zhang, D. The Protective Effect and Antitumor Activity of Aconiti Lateralis Radix Praeparata (Fuzi) Polysaccharide on Cyclophosphamide-Induced Immunosuppression in H22 Tumor-Bearing Mice. Front. Pharmacol. 2023, 14, 14. DOI: 10.3389/fphar.2023.1151092.
  • Yue, H.; Pi, Z.-F.; Li, H.-L.; Song, F.-R.; Liu, Z.-Q.; Liu, S.-Y. Studies on the Stability of Diester-Diterpenoid Alkaloids from the Genus Aconitum L. by High Performance Liquid Chromatography Combined with Electrospray Ionisation Tandem Mass Spectrometry (HPLC/ESI/MSn). Phytochem. Anal. 2008, 19(2), 141–147. DOI: 10.1002/pca.1027.
  • Feng, H.-T.; Yuan, L.-L.; Li, S. F. Y. Analysis of Chinese Medicine Preparations by Capillary Electrophoresis–Mass Spectrometry. J. Chromatogr. A. 2003, 1014(1–2), 83–91. DOI: 10.1016/S0021-9673(03)00942-7.
  • Zhao, S.; Pan, Z.; Chen, X.; Hu, Z. Analysis of the Aconitine Alkaloids in Traditional Chinese Medicines by Nonaqueous Capillary Electrophoresis Using a New Recording Mode. Biomed. Chromatogr. 2004, 18(6), 381–387. DOI: 10.1002/bmc.332.
  • Wang, Y.; Liu, Z.; Song, F.; Liu, S. Electrospray Ionization Tandem Mass Spectrometric Study of the Aconitines in the Roots of Aconite. Rapid Commun. Mass Spectrom. 2002, 16(22), 2075–2082. DOI: 10.1002/rcm.828.
  • Xie, Y.; Jiang, Z. H.; Zhou, H.; Xu, H. X.; Liu, L. Simultaneous Determination of Six Aconitum Alkaloids in Proprietary Chinese Medicines by High-Performance Liquid Chromatography. J. Chromatogr. A. 2005, 1093(1–2), 195–203. DOI: 10.1016/j.chroma.2005.07.071.
  • Zhang, F.; Tang, M.-H.; Chen, L.-J.; Li, R.; Wang, X.-H.; Duan, J.-G.; Zhao, X.; Wei, Y.-Q. Simultaneous Quantitation of Aconitine, Mesaconitine, Hypaconitine, Benzoylaconine, Benzoylmesaconine and Benzoylhypaconine in Human Plasma by Liquid Chromatography–Tandem Mass Spectrometry and Pharmacokinetics Evaluation of “SHEN-FU” Injectable Powder. J. Chromatogr. B. 2008, 873(2), 173–179. DOI: 10.1016/j.jchromb.2008.08.008.
  • Zhang, H.-G.; Sun, Y.; Duan, M.-Y.; Chen, Y.-J.; Zhong, D.-F.; Zhang, H.-Q. Separation and Identification of Aconitum Alkaloids and Their Metabolites in Human Urine. Toxicon. 2005, 46(5), 500–506. DOI: 10.1016/j.toxicon.2005.06.014.
  • Chen, J.-H.; Lee, C.-Y.; Liau, B.-C.; Lee, M.-R.; Jong, T.-T.; Chiang, S.-T. Determination of Aconitine-Type Alkaloids as Markers in Fuzi (Aconitum Carmichaeli) by LC/(+) ESI/MS3. J. Pharm. Biomed. Anal. 2008, 48(4), 1105–1111. DOI: 10.1016/j.jpba.2008.08.022.
  • Tan, P.; Liu, Y.-G.; Li, F.; Qiao, Y.-J. Reaction Product Analysis of Aconitine in Dilute Ethanol Using ESI-Q-ToF-MS. Pharmazie. 2012, 67(4), 274–276.
  • Tazawa, T.; Zhao, H.-Q.; Li, Y.; Meselhy, M. R.; Nakamura, N.; Akao, T.; Hattori, M. A New Enzyme Immunoassay for Aconitine and Its Application to Quantitative Determination of Aconitine Levels in Plasma. Biol. Pharm. Bull. 2003, 26(9), 1289–1294. DOI: 10.1248/bpb.26.1289.
  • Sommer, F.; Anderson, J. M.; Bharti, R.; Raes, J.; Rosenstiel, P. The Resilience of the Intestinal Microbiota Influences Health and Disease. Nat. Rev. Microbiol. 2017, 15(10), 630–638. DOI: 10.1038/nrmicro.2017.58.
  • Collins, S. M. A Role for the Gut Microbiota in IBS. Nat. Rev. Dis. Primers. 2014, 11(8), 497–505. DOI: 10.1038/nrgastro.2014.40.
  • Anas, A.; van der Poll, T.; de Vos, A. F. Role of CD14 in Lung Inflammation and Infection. Crit. care. 2010, 14(2), 129–140. DOI: 10.1186/cc8850.
  • Presley, L. L.; Wei, B.; Braun, J.; Borneman, J. Bacteria Associated with Immunoregulatory Cells in Mice. Appl. Environ. Microbiol. 2010, 76(3), 936–941. DOI: 10.1128/AEM.01561-09.
  • Tang, J.; Chen, M.; Ke, W. C.; Wang, L. N.; Zhang, J.; Ding, W. R. Advances in Lacto-Bacteria in Disease Control, Prevention and Health Care. J. Microbiol. 2017, 76(3), 98–107.
  • Thomas, C. M.; Hong, T.; Van Pijkeren, J. P.; Hemarajata, P.; Trinh, D. V.; Hu, W.; Britton, R. A.; Kalkum, M.; Versalovic, J.; Heimesaat, M. M. Histamine Derived from Probiotic Lactobacillus Reuteri Suppresses TNF via Modulation of PKA and ERK Signaling. PLoS One. 2012, 7(2), e31951. DOI: 10.1371/journal.pone.0031951.
  • Peterson, D. A.; McNulty, N. P.; Guruge, J. L.; Gordon, J. I. IgA Response to Symbiotic Bacteria as a Mediator of Gut Homeostasis. Cell. Host Microbe. 2007, 2(5), 328–339. DOI: 10.1016/j.chom.2007.09.013.
  • Wu, W.; Sun, M.; Chen, F.; Cao, A. T.; Liu, H.; Zhao, Y.; Huang, X.; Xiao, Y.; Yao, S.; Zhao, Q. Microbiota Metabolite Short-Chain Fatty Acid Acetate Promotes Intestinal IgA Response to Microbiota Which is Mediated by GPR43. Mucosal Immunol. 2017, 10(4), 946–956. DOI: 10.1038/mi.2016.114.
  • Hu, S.; Wang, J.; Xu, Y.; Yang, H.; Wang, J.; Xue, C.; Yan, X.; Su, L. Anti-Inflammation Effects of Fucosylated Chondroitin Sulphate from Acaudina Molpadioides by Altering Gut Microbiota in Obese Mice. Food Funct. 2019, 10(3), 1736–1746. DOI: 10.1039/C8FO02364F.
  • Kim, S. B.; Kang, M. J.; Kang, C. W.; Kim, N. H.; Choi, H. W.; Jung, H. A.; Choi, J. S.; Kim, G. D. Anti‑Inflammatory Effects of 6‑Formyl Umbelliferone via the NF‑Κb and ERK/MAPK Pathway on LPS‑Stimulated RAW 264.7 Cells. Int. J. Mol. Med. 2019, 43(4), 1859–1865. DOI: 10.3892/ijmm.2019.4078.
  • Ye, X.; Wu, H.; Sheng, L.; Liu, Y.-X.; Ye, F.; Wang, M.; Zhou, H.; Su, Y.; Zhang, X.-K. Oncogenic Potential of Truncated RXRα During Colitis-Associated Colorectal Tumorigenesis by Promoting IL-6-STAT3 Signaling. Nat. Commun. 2019, 10(1), 1463. DOI: 10.1038/s41467-019-09375-8.
  • Zhou, S.; Li, Y.; Lu, J.; Chen, C.; Wang, W.; Wang, L.; Zhang, Z.; Dong, Z.; Tang, F. Nuclear Factor-Erythroid 2-Related Factor 3 (NRF3) is Low Expressed in Colorectal Cancer and Its Down-Regulation Promotes Colorectal Cancer Malignance Through Activating EGFR and p38/MAPK. Am. J. Cancer Res. 2019, 9(3), 511.
  • Lawrence, T. The Nuclear Factor NF-Κb Pathway in Inflammation. Cold. Spring. Harb. Perspect. Biol. 2009, 1(6), a001651. DOI: 10.1101/cshperspect.a001651.
  • Hoesel, B.; Schmid, J. A. The Complexity of NF-Κb Signaling in Inflammation and Cancer. Mol. Cancer. 2013, 12(1), 1–15. DOI: 10.1186/1476-4598-12-86.
  • Zhang, H.; Shan, Y.; Wu, Y.; Xu, C.; Yu, X.; Zhao, J.; Yan, J.; Shang, W. Berberine Suppresses LPS-Induced Inflammation Through Modulating Sirt1/nf-Κb Signaling Pathway in RAW264. 7 Cells. Int. Immunopharmacol. 2017, 52, 93–100. DOI: 10.1016/j.intimp.2017.08.032.
  • Yu, H.-H.; Li, M.; Li, Y.-B.; Lei, B.-B.; Yuan, X.; Xing, X.-K.; Xie, Y.-F.; Wang, M.; Wang, L.; Yang, H.-J. Benzoylaconitine Inhibits Production of IL-6 and IL-8 via MAPK, Akt, NF-Κb Signaling in IL-1β-Induced Human Synovial Cells. Biol. Pharm. Bull. 2020, 43(2), 334–339. DOI: 10.1248/bpb.b19-00719.
  • Burke, J. E.; Williams, R. L. Synergy in Activating Class I PI3Ks. Trends. Biochem. Sci. 2015, 40(2), 88–100. DOI: 10.1016/j.tibs.2014.12.003.
  • Zhang, L.; Li, T.; Wang, R.; Xu, J.; Zhou, L.; Yan, L.; Hu, Z.; Li, H.; Liu, F.; Du, W. Evaluation of Long-Time Decoction-Detoxicated Hei-Shun-Pian (Processed Aconitum Carmichaeli Debeaux Lateral Root with Peel) for Its Acute Toxicity and Therapeutic Effect on Mono-Iodoacetate Induced Osteoarthritis. Front. Pharmacol. 2020, 11, 11 1053. DOI: 10.3389/fphar.2020.01053.
  • Ha, Y. M.; Kim, M. Y.; Park, M. K.; Lee, Y. S.; Kim, Y. M.; Kim, H. J.; Lee, J. H.; Chang, K. C. Higenamine Reduces HMGB1 During Hypoxia-Induced Brain Injury by Induction of Heme Oxygenase-1 Through PI3K/Akt/Nrf-2 Signal Pathways. Apoptosis. 2012, 17(5), 463–474. DOI: 10.1007/s10495-011-0688-8.
  • Xiao, S.; Zhang, Y.; Song, P.; Xie, J.; Pang, G. The Investigation of Allosteric Regulation Mechanism of Analgesic Effect Using SD Rat Taste Bud Tissue Biosensor. Biosens. Bioelectron. 2019, 126, 126 815–823. DOI: 10.1016/j.bios.2018.11.046.
  • Jean, S. R.; Tulumello, D. V.; Riganti, C.; Liyanage, S. U.; Schimmer, A. D.; Kelley, S. O. Mitochondrial Targeting of Doxorubicin Eliminates Nuclear Effects Associated with Cardiotoxicity. ACS. Chem. Biol. 2015, 10(9), 2007–2015. DOI: 10.1021/acschembio.5b00268.
  • Asensio-López, M. C.; Soler, F.; Sánchez-Más, J.; Pascual-Figal, D.; Fernández-Belda, F.; Lax, A. Early Oxidative Damage Induced by Doxorubicin: Source of Production, Protection by GKT137831 and Effect on Ca2+ Transporters in HL-1 Cardiomyocytes. Arch. Biochem. Biophys. 2016, 594, 594 26–36. DOI: 10.1016/j.abb.2016.02.021.
  • Fu, H. Y.; Sanada, S.; Matsuzaki, T.; Liao, Y.; Okuda, K.; Yamato, M.; Tsuchida, S.; Araki, R.; Asano, Y.; Asanuma, H. Chemical endoplasmic reticulum chaperone alleviates doxorubicin-induced cardiac dysfunction. Circ. Res. 2016, 118(5), 798–809. DOI: 10.1161/CIRCRESAHA.115.307604.
  • Zhang, L.; Siyiti, M.; Zhang, J.; Yao, M.; Zhao, F. Anti‑Inflammatory and Anti‑Rheumatic Activities in vitro of Alkaloids Separated from Aconitum Soongoricum Stapf. Exp. Ther. Med. 2021, 21(5), 1–11. DOI: 10.3892/etm.2020.9445.
  • Yan, X.; Wu, H.; Ren, J.; Liu, Y.; Wang, S.; Yang, J.; Qin, S.; Wu, D. Shenfu Formula Reduces Cardiomyocyte Apoptosis in Heart Failure Rats by Regulating microRnas. J. Ethnopharmacol. 2018, 227, 227 105–112. DOI: 10.1016/j.jep.2018.05.006.