1,814
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Antidiabetic medicinal plants from the Chenopodiaceae family: a comprehensive overview

, , , , , , , , , , & show all
Pages 194-213 | Received 15 Aug 2023, Accepted 29 Dec 2023, Published online: 21 Jan 2024

References

  • Dias, D. A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites. 2012, 2(2), 303–336. DOI: 10.3390/metabo2020303.
  • Tran, N.; Pham, B.; Le, L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology. 2020, 9(9), 252. DOI: 10.3390/biology9090252.
  • Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal Plants: Past History and Future Perspective. J. Herbmed Pharmacol. 2017, 7(1), 1–7. DOI: 10.15171/jhp.2018.01.
  • Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites. 2019, 9(11), 258. DOI: 10.3390/metabo9110258.
  • Mohd Azman, N. A.; Gallego, M. G.; Segovia, F.; Abdullah, S.; Shaarani, S. M.; Almajano Pablos, M. P. Study of the Properties of Bearberry Leaf Extract as a Natural Antioxidant in Model Foods. Antioxidants. 2016, 5(2), 11. DOI: 10.3390/antiox5020011.
  • Sarhan, A. T.; Abdulabbas, M. A.; Abd Al-Hussein, Q.; Huda, Z.; Mohammed, A. Antimicrobial Activities of Medicinal Plant on the Oral Diseases. Int. J. Pharm. Bio Med.Sci. 2023, 3(3), 147–151. DOI: 10.47191/ijpbms/v3-i3-10.
  • Kanwal, S.; Ullah, N.; Haq, I.; Afzal, I.; Mirza, B. Antioxidant, Antitumor Activities and Phytochemical Investigation of Hedera Nepalensis K. Koch, an Important Medicinal Plant from Pakistan. Pak. J. Bot. 2011, 43(8), 85–89.
  • Greenwell, M.; Rahman, P. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res. 2015, 6(10), 4103. DOI: 10.13040/IJPSR.0975-8232.6(10).4103-12.
  • Hashmi, S. J.; Hashmi, S. S.; Ghani, A.; Aqeel, A.; Ibrahim, M.; Taskeen, S. A.; Salman, S. Antioxidant and Antimicrobial Activities of So-Steviol: A Derivative of Stevioside. Pure And Appl. Biol. 2023, 12(2), 1076–1083. DOI: 10.19045/bspab.2023.120110.
  • Saeedi, P.; Salpea, P.; Karuranga, S.; Petersohn, I.; Malanda, B.; Gregg, E. W.; Unwin, N.; Wild, S. H.; Williams, R. Mortality Attributable to Diabetes in 20–79 Years Old Adults, 2019 Estimates: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2020, 162, 108086. DOI: 10.1016/j.diabres.2020.108086.
  • Shapiro, K.; Gong, W. C. Natural Products Used for Diabetes. J. Am. Pharm. Assoc(1996). 2002, 42(2), 217–226. DOI: 10.1331/108658002763508515.
  • Oyagbemi, A.; Salihu, M.; Oguntibeju, O.; Esterhuyse, A.; Farombi, E. Some Selected Medicinal Plants with Antidiabetic Potentials. Antioxidant-Antidiabetic Agents And Hum. Health IntechOpen. 2014. DOI: 10.5772/57230.
  • Patel, D.; Prasad, S. K.; Kumar, R.; Hemalatha, S. An Overview on Antidiabetic Medicinal Plants Having Insulin Mimetic Property. Asian Pac. J. Trop. Biomed. 2012, 2(4), 320–330. DOI: 10.1016/S2221-1691(12)60032-X.
  • Mahmoodi, M. R.; Mohammadizadeh, M. Therapeutic Potentials of Nigella Sativa Preparations and Its Constituents in the Management of Diabetes and Its Complications in Experimental Animals and Patients with Diabetes Mellitus: A Systematic Review. Complementary Ther. Med. 2020, 50, 102391. DOI: 10.1016/j.ctim.2020.102391.
  • Sharpe, R. M.; Williamson-Benavides, B.; Edwards, G. E.; Dhingra, A. Methods of Analysis of Chloroplast Genomes of C3, Kranz Type C4 and Single Cell C4 Photosynthetic Members of Chenopodiaceae. Plant Methods. 2020, 16(1), 1–14. DOI: 10.1186/s13007-020-00662-w.
  • Zhaglovskaya, A.; Aidosova, S.; Akhtayeva, N.; Mamurova, A.; Yesimova, D. Anatomical and Morphological Stem Features of Two Haloxylon Species (Chenopodiaceae Vent.) of Drought Stress, Kazakhstan. Biosci. Biotechnol. Res. Asia. 2015, 12(3), 1965–1974. DOI: 10.13005/bbra/1863.
  • Association, A. D. Standards of Medical Care in Diabetes—2014. Diabetes Care. 2014, 37(Supplement_1), S14–S80. DOI: 10.2337/dc14-er03.
  • Usai, R.; Majoni, S.; Rwere, F. Natural Products for the Treatment and Management of Diabetes Mellitus in Zimbabwe-A Review. Front Pharmacol. 2022, 13, 980819. DOI: 10.3389/fphar.2022.980819.
  • Glimn-Lacy, J.; Kaufman, P. B. Botany illustrated: introduction to plants, major groups, flowering plant families; Springer, 2006. DOI: 10.1007/0-387-28875-9.
  • Gerbeaud. Home Page, Available from: https://www.gerbeaud.com/.
  • African Plants Database. Home Page. Conservatoire Et Jardin Botaniques de la Ville de Genève And South African National Biodiversity Institute, Pretoria, (accessed Nov). http://www.Ville-ge.Ch/musinfo/bd/cjb/africa
  • Benzineb, E.; Kambouche, N.; Hamiani, A.; Bellahouel, S.; Zitouni, H.; Toumi, H. Phenolics Compounds and Biological Activity of Leaves of Anabasis Articulata, an Algerian Medicinal Plant. Int. J. Pharm. Res. Allied. Sci. 2019, 8(4), 1–5.
  • Metwally, N. S.; Mohamed, A. M.; ELSharabasy, F. S. Chemical Constituents of the Egyptian Plant Anabasis Articulata (Forssk) Moq and Its Antidiabetic Effects on Rats with Streptozotocin-Induced Diabetic Hepatopathy. J. Appl. Pharm. Sci. 2012, 2(4), 54. DOI: 10.7324/JAPS.2012.2403.
  • Kambouche, N.; Merah, B.; Derdour, A.; Bellahouel, S.; Bouayed, J.; Dicko, A.; Younos, C.; Soulimani, R. Hypoglycemic and antihyperglycemic effects of Anabasis articulata (Forssk) Moq (Chenopodiaceae), an Algerian medicinal plant. Afr. J. Biotechnol. 2009, 8(20), 20.
  • Ortiz-Dorda, J.; Martínez-Mora, C.; Correal, E.; Simón, B.; Cenis, J. Genetic Structure of Atriplex Halimus Populations in the Mediterranean Basin. Ann. Bot. 2005, 95(5), 827–834. DOI: 10.1093/aob/mci086.
  • Walker, D. J.; Lutts, S.; Sánchez-García, M.; Correal, E. Atriplex halimus L.: Its biology and uses. J. Arid Env. 2014, 100, 111–121. DOI: 10.1016/j.jaridenv.2013.09.004.
  • Bounouar, E.; Missoun, F.; Amari, N. O.; Belabaci, F. Z.; Belabaci, S.; Sekkal, F. Z.; Djebli, N. Antidiabetic Effect of Atriplex Halimus L (Sp. Pl. 2: 1052 (1753)) Long and Short Term Treatment Against Streptozotocin Induced Diabetes in Rat. In Anales de Biología; Servicio de Publicaciones de la Universidad de Murcia: 2022; pp. 21–30. doi: 10.6018/analesbio.44.03
  • Fišerová, M.; Gigac, J.; Majtnerová, A.; Szeiffová, G. Possible Utilization of Annual Plants (Amaranthus Caudatus L., Atriplex Hortensis L., Helianthus Tuberosus) in Pulp and Paper Industry. Main Organ. Main Organ, 2003; pp. 237.
  • Ali, B.; Musaddiq, S.; Iqbal, S.; Rehman, T.; Shafiq, N.; Hussain, A. The Therapeutic Properties, Ethno Pharmacology and Phytochemistry of Atriplex Species: A Review. Pak. J. Biochem. Biotechnol. 2021, 2(1), 49–64. DOI: 10.52700/pjbb.v2i1.38.
  • Bouaziz, M.; Dhouib, A.; Loukil, S.; Boukhris, M.; Sayadi, S. Polyphenols Content, Antioxidant and Antimicrobial Activities of Extracts of Some Wild Plants Collected from the South of Tunisia. Afr. J. Biotechnol. 2009, 8(24). DOI: 10.5897/AJB2009.000-9545.
  • Turki, Z.; El-Shayeb, F.; Shehata, F. Taxonomic Studies in the Camphorosmeae (Chenopodiaceae) in Egypt. 1. Subtribe Kochiinae (Bassia, Kochia and Chenolea). Acta Botan. Hung. 2008, 50(1–2), 181–201. DOI: 10.1556/ABot.50.2008.1-2.14.
  • Al-Harbi, N. A. Diversity of Medicinal Plants Used in the Treatment of Skin Diseases in Tabuk Region, Saudi Arabia. J. Med. Plants Res. 2017, 11(35), 549–555. DOI: 10.5897/JMPR2017.6438.
  • Hammiche, V.; Maiza, K. Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer. J. Ethnopharmacol. 2006, 105(3), 358–367. DOI: 10.1016/j.jep.2005.11.028.
  • Boufous, H.; Marhoume, F.; Chait, A.; Bagri, A. Ethnopharmacological Survey of Medicinal Plants with Hallucinogenic Effect and Used Against Pain, Inflammatory Diseases, Diabetes and Urinary Lithiasis in Zagora “Morocco”. J. Intercultural Ethnopharmacol. 2017, 6(4), 342–350. DOI: 10.5455/jice.20170721062527.
  • Chemsa, A. E.; Zellagui, A.; Ozturk, M.; Erol, E.; Ceylan, O.; Duru, M. E.; Lahouel, M. Chemical composition, antioxidant, anticholinesterase, antimicrobial and antibiofilm activities of essential oil and methanolic extract of Anthemis stiparum subsp. sabulicola (Pomel) Oberpr. Microb. Pathogenesis. 2018, 119, 233–240. DOI: 10.1016/j.micpath.2018.04.033.
  • El-Sayed, N.; Mogahed, M.; Haron, A.; Mabry, T. Flavonoids and Other Constituents from Bassia muricata and Their Insecticidal Activities. Rev. Latinoam. Quim. 1998, 26(3), 81–85.
  • Gheraissa, N.; Chemsa, A. E.; Elsharkawy, E. R.; Cherrada, N. Phenolic Compound Profile, and Evaluation of Biological Properties of Bassia muricata (L.) Asch. Aerial Part. Int. J. Sec. Metabo. 2022, 9(3), 335–347. DOI: 10.21448/ijsm.1080537.
  • Kumar, S.; Brooks, M. S.-L. Use of Red Beet (Beta Vulgaris L.) for Antimicrobial Applications—A Critical Review. Food and Bioprocess Technology. Food Bioprocess. Technol. 2018, 11(1), 17–42. DOI: 10.1007/s11947-017-1942-z.
  • Donga, J.; Surani, V.; Sailor, G.; Chauhan, S.; Seth, A. A Systematic Review on Natural Medicine Used for Therapy of Diabetes Mellitus of Some Indian Medicinal Plants. Pharma Sci. Monit. 2011, 2(1), 36–72.
  • Takács-Hájos, M.; Vargas-Rubóczki, T. Evaluation of Bioactive Compounds in Leaf and Root of Five Beetroot Varieties. J. Agric. Food. Res. 2022, 7, 100280. DOI: 10.1016/j.jafr.2022.100280.
  • Thiruvengadam, M.; Chung, I.-M.; Samynathan, R.; Chandar, S. H.; Venkidasamy, B.; Sarkar, T.; Rebezov, M.; Gorelik, O.; Shariati, M. A.; Simal-Gandara, J. A Comprehensive Review of Beetroot (Beta Vulgaris L.) Bioactive Components in the Food and Pharmaceutical Industries. Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–33. DOI: 10.1080/10408398.2022.2108367.
  • Eslami, S. V.; Ward, S.; Album, C.; Murale, C. In Biology and Management of Problematic Crop Weed Species. Academic Press, 2021; pp. 89–112. doi: 10.1016/B978-0-12-822917-0.00009-4.
  • Chamkhi, I.; Charfi, S.; El Hachlafi, N.; Mechchate, H.; Guaouguaou, F.-E.; El Omari, N.; Bakrim, S.; Balahbib, A.; Zengin, G.; Bouyahya, A. Genetic diversity, antimicrobial, nutritional, and phytochemical properties of Chenopodium album: A comprehensive review. Food Res. Int. 2022, 154, 110979. DOI: 10.1016/j.foodres.2022.110979.
  • Kasali, F. M.; Tusiimire, J.; Kadima, J. N.; Agaba, A. G. Ethnomedical Uses, Chemical Constituents, and Evidence-Based Pharmacological Properties of Chenopodium Ambrosioides L.: Extensive Overview. Future J. Pharm. Sci. 2021, 7(1), 1–36. DOI: 10.1186/s43094-021-00306-3.
  • Calado, G. P.; Lopes, A. J. O.; Costa Junior, L. M.; Lima, F. D. C. A.; Silva, L. A.; Pereira, W. S.; Amaral, F. M. D.; Garcia, J. B. S.; Cartagenes, M. D. S. D. S.; Nascimento, F. R. Chenopodium Ambrosioides L. Reduces Synovial Inflammation and Pain in Experimental Osteoarthritis. PloS One. 2015, 10(11), e0141886. DOI: 10.1371/journal.pone.0141886.
  • Song, M.-J.; Lee, S.-M.; Kim, D.-K. Antidiabetic effect of Chenopodium ambrosioides. Phytopharmacology. 2011, 1(2), 12–15.
  • Ahmed, Z.; Uddin, Z.; Ali, W.; Zahoor, M.; Alotaibi, A.; Shoaib, M.; Ghias, M.; Bari, W. Antioxidant, Antidiabetic, and Anticholinesterase Potential of Chenopodium Murale L. Extracts Using in vitro and in vivo Approaches. Open Chem. 2022, 20(1), 1171–1186. DOI: 10.1515/chem-2022-0232.
  • Tabatabaei, I.; Alseekh, S.; Shahid, M.; Leniak, E.; Wagner, M.; Mahmoudi, H.; Thushar, S.; Fernie, A. R.; Murphy, K. M.; Schmöckel, S. M. The Diversity of Quinoa Morphological Traits and Seed Metabolic Composition. Sci. Data. 2022, 9(1), 323. DOI: 10.1038/s41597-022-01399-y.
  • Maughan, P. J.; Bonifacio, A.; Coleman, C. E.; Jellen, E. N.; Stevens, M. R.; Fairbanks, D. J. Quinoa (Chenopodium Quinoa). Pulses, Sugar And Tuber Crops, 2007, 147–158. DOI: 10.1007/978-3-540-34516-9_9.
  • Singh, D. Quinoa (Chenopodium Quinoa Willd); Jodhupur: Scientific Publishers, 2019.
  • Azzane, A.; Amssayef, A.; Eddouks, M. Chenopodium quinoa Exhibits Antihyperglycemic Activity in Streptozotocin-induced Diabetic Rats. Cardiovasc. Hematological Agents In Med. Chem (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents). 2022, 20(2), 125–132. DOI: 10.2174/1871525719666210812094837.
  • Díaz-Rizzolo, D. A.; Acar-Denizli, N.; Kostov, B.; Roura, E.; Sisó-Almirall, A.; Delicado, P.; Gomis, R. Glycaemia Fluctuations Improvement in Old-Age Prediabetic Subjects Consuming a Quinoa-Based Diet: A Pilot Study. Nutrients. 2022, 14(11), 2331. DOI: 10.3390/nu14112331.
  • Little, A.; Murphy, K.; Solverson, P. Quinoa’s Potential to Enhance Dietary Management of Obesity and Type-2 Diabetes: A Review of the Current Evidence. Diabetology. 2021, 2(2), 77–94. DOI: 10.3390/diabetology2020007.
  • Shaltout, M. Demographic Analysis Of Cornulaca Monacantha Delile Population In Asir Region, Saudi Arabia. Egypt. J. Exp. Biol. 2011, 7, 67–78.
  • El-Manawaty, M.; Gohar, L. In vitro Alpha-Glucosidase Inhibitory Activity of Egyptian Plant Extracts as an Indication for Their Antidiabetic Activity. Asian J. Pharm. Clin. Res. 2018, 11(7), 360. DOI: 10.22159/ajpcr.2018.v11i7.25856.
  • Duarte, B.; Feijão, E.; Pinto, M. V.; Matos, A. R.; Silva, A.; Figueiredo, A.; Fonseca, V. F.; Reis-Santos, P.; Caçador, I. Nutritional Valuation and Food Safety of Endemic Mediterranean Halophytes Species Cultivated in Abandoned Salt Pans Under a Natural Irrigation Scheme. Estuarine, Coastal And Shelf Sci. 2022, 265, 107733. DOI: 10.1016/j.ecss.2021.107733.
  • Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae. 2022, 8(3), 195. DOI: 10.3390/horticulturae8030195.
  • Öztürk, M.; Altay, V.; Nazish, M.; Ahmad, M.; Ahmad, M. Halophyte Plant Diversity and Public Health. 2023. DOI: 10.1007/978-3-031-21944-3.
  • Singh, N. T. Irrigation and Soil Salinity in the Indian Subcontinent: Past and Present; Bethlehem, Pennsylvania: Lehigh University Press, 2005.
  • Acheuk, F.; Lakhdari, W.; Dahliz, A.; Abdellaoui, K.; Moukadem, M.; Allili, S. Toxicity, Acethylcolinesterase And Glutathione Stransferase Effects Of Halocnemum Strobilaceum Crude Extract Against Tribolium Castaneum. Poljoprivreda i Sumarstvo. 2018, 64(1), 23–33. DOI: 10.17707/AgricultForest.64.1.03.
  • Razek, M. A.; Moussa, A.; El-Shanawany, M.; Singab, A. Comparative Chemical and Biological Study of Roots and Aerial Parts of Halocnemum Strobilaceum Growing Wildly in Egypt. J.Pharm.Sci. Res. 2019, 11(9), 3289–3296.
  • Heneidy, S. Z.; Halmy, M. W. A.; Bidak, L. M. The Ethnobotanical Importance and Conservation Value of Native Plants in Eastern Arabian Peninsula. Feddes Repertorium. 2017, 128(3–4), 105–128. DOI: 10.1002/fedr.201600024.
  • Bouaziz, A.; Mhalla, D.; Zouari, I.; Jlaiel, L.; Tounsi, S.; Jarraya, R.; Trigui, M. Antibacterial and Antioxidant Activities of Hammada Scoparia Extracts and Its Major Purified Alkaloids. South African J. Of Bot. 2016, 105, 89–96. DOI: 10.1016/j.sajb.2016.03.012.
  • Miguel, M.; Bouchamaa, N.; Aazza, S.; Gaamoussi, F.; Lyoussi, B. Antioxidant, Anti-Inflammatory and Anti-Acetylcholinesterase Activities of Eleven Extracts of Moroccan Plants. Fresenius Environ. Bull. 2014, 23(6), 1–14. DOI: 10.1007/s10068-014-0044-1.
  • Dille, A.; Osipitan, W. Other Common Names: Summer Cypress, Belvedere. Manage weeds on your farm, 313. DOI: 10.3733/ca.2021a0012.
  • Jo, S.; Ryu, J.; Han, H. Y.; Lee, G.; Ryu, M. H.; Kim, H. Anti-inflammatory activity of Kochia scoparia fruit on contact dermatitis in mice. Mol. Med. Rep. 2016, 13(2), 1695–1700. DOI: 10.3892/mmr.2015.4698.
  • Cárdenas-Pérez, S.; Rajabi Dehnavi, A.; Leszczyński, K.; Lubińska-Mielińska, S.; Ludwiczak, A.; Piernik, A. Salicornia Europaea L. Functional Traits Indicate Its Optimum Growth. Plants. 2022, 11(8), 1051. 1051. DOI: 10.3390/plants11081051.
  • Rahman, M. M.; Kim, M.-J.; Kim, J.-H.; Kim, S.-H.; Go, H.-K.; Kweon, M.-H.; Kim, D.-H. Desalted Salicornia Europaea Powder and Its Active Constituent, Trans-Ferulic Acid, Exert Anti-Obesity Effects by Suppressing Adipogenic-Related Factors. Pharm. Biol. 2018, 56(1), 183–191. DOI: 10.1080/13880209.2018.1436073.
  • Renna, M.; Gonnella, M. Ethnobotany, Nutritional Traits, and Healthy Properties of Some Halophytes Used as Greens in the Mediterranean Basin. Handbook Of Halophytes: From Molecules To Ecosystems Towards Biosaline Agriculture, 2020, 1–19. DOI: 10.1007/978-3-030-17854-3_100-1.
  • Hamza, N.; Berke, B.; Umar, A.; Cheze, C.; Gin, H.; Moore, N. A Review of Algerian Medicinal Plants Used in the Treatment of Diabetes. J. Ethnopharmacol. 2019, 238, 111841. DOI: 10.1016/j.jep.2019.111841.
  • Chehma, A. Catalogue des plantes spontanées du Sahara septentrional algérien; Éditions universitaires européennes, 2006.
  • Ozenda, P. Flore et végétation du Sahara 3 édition; 2004.
  • Ghourri, M.; Zidane, L.; Douira, A. Usage des plantes médicinales dans le traitement du Diabète Au Sahara marocain (Tan-Tan). J. Anim. Plant Sci. 2013, 17(1), 2388–2411.
  • Martínez, I. B.; Álvarez, M. E. R.; Sotomayor, S. P.; Mustapha, R. S. Sahara Occidental. Plantas y Usos. Estudio etnobotánico del Sahara Occidental: Usos ycostumbres del pueblo saharaui relacionados con los recursos vegetales. 2010, 4.
  • Cherrada, N.; Chemsa, A. E.; Gheraissa, N.; Djilani, G. A.; El-Manawaty, M. A.; Rebiai, A.; Messaoudi, M.; Awuchi, C. G. Antioxidant Potentials and Inhibitory Activities of α-Amylase, α-Glucosidase, and Acetylcholinesterase of Different Fractions from Salsola Tetragona Delile. Int. J. Food Prop. 2023, 26(1), 1787–1796. DOI: 10.1080/10942912.2023.2230385.
  • Meng, S.; Liu, C.; Xu, X.; Song, S.; Song, S.; Zhang, Z.; Liu, L. Comparison of Morphological Features of Fruits and Seeds for Identifying Two Taxonomic Varieties of Spinacia Oleracea L. Can. J. Plant Sci. 2017, 98(2), 318–331. DOI: 10.1139/CJPS-2017-0119.
  • Gutierrez, R. M. P.; Velazquez, E. G. Glucopyranoside Flavonoids Isolated from Leaves of Spinacia Oleracea (Spinach) Inhibit the Formation of Advanced Glycation End Products (AGEs) and Aldose Reductase Activity (RLAR). Biomed. Pharmacother. 2020, 128, 110299. DOI: 10.1016/j.biopha.2020.110299.
  • Verma, S. A study on medicinal herb Spinacia oleraceae Linn: Amaranthaceae. J. Drug Delivery Ther. 2018, 8(4), 59–61. DOI: 10.22270/jddt.v8i4.1767.
  • Hussain, F.; Bashir, S. Antioxidant, Antidiabetic and Structural Analysis of Spinacia Oleracea Leaf. Pak. J. Biochem. Biotechnol. 2022, 3(1), 1–11. DOI: 10.52700/pjbb.v3i1.61.
  • Yasseen, B. T.; Al-Thani, R. F. Ecophysiology of Wild Plants and Conservation Perspectives in the State of Qatar. Agric. Chem. 2013, 37. DOI: 10.5772/55305.
  • Ahmad, I.; Gul, H.; Noureen, A.; Ujjan, J. A.; Manzoor, S.; Muhammad, W. Antimicrobial, Antioxidant and Antidiabetic Potential of Suaeda fruticosa L. Int. J. Emerging Technol. 2021, 12(2), 155–160.
  • Saleem, H.; Khurshid, U.; Sarfraz, M.; Tousif, M. I.; Alamri, A.; Anwar, S.; Alamri, A.; Ahmad, I.; Abdallah, H. H.; Mahomoodally, F. M. A comprehensive phytochemical, biological, toxicological and molecular docking evaluation of Suaeda fruticosa (L.) Forssk.: An edible halophyte medicinal plant. Food Chem. Toxicol. 2021, 154, 112348. DOI: 10.1016/j.fct.2021.112348.
  • Alhdad, G. M.; Seal, C. E.; Al-Azzawi, M. J.; Flowers, T. J. The Effect of Combined Salinity and Waterlogging on the Halophyte Suaeda Maritima: The Role of Antioxidants. Environ. Exp. Bot. 2013, 87, 120–125. DOI: 10.1016/j.envexpbot.2012.10.010.
  • Joshi, A.; Kanthaliya, B.; Arora, J. Halophytic Plant Existence in Indian Salt Flats: Biodiversity, Biology, and Uses. Handbook Of Halophytes: From Molecules To Ecosystems Towards Biosaline Agriculture, 2020, 1–22. DOI: 10.1007/978-3-030-17854-3_108-1.
  • Al-Tohamy, R.; Ali, S. S.; Saad-Allah, K.; Fareed, M.; Ali, A.; El-Badry, A.; El-Zawawy, N. A.; Wu, J.; Sun, J.; Mao, G.-H. Phytochemical Analysis and Assessment of Antioxidant and Antimicrobial Activities of Some Medicinal Plant Species from Egyptian Flora. J. Appl. Biomed. 2018, 16(4), 289–300. DOI: 10.1016/j.jab.2018.08.001.
  • Chamkouri, N. SPE-HPLC-UV for simultaneous determination of vitamins B group concentrations in Suaeda vermiculata. Tech. J. Eng. Appl. Sci. 2014, 4, 439–443.
  • Jeeva, S.; Anlin Sheebha, Y. A Review of Antidiabetic Potential of Ethnomedicinal Plants. Med. Aromat Plants. 2014, 3(165), 2167–0412.1000165. DOI: 10.4172/2167-0412.1000165.
  • Mouderas, F.; El Haci, I. A.; Lahfa, F. B. Phytochemical Profile, Antioxidant and Antimicrobial Activities of Traganum Nudatum Delile Aerial Parts Organic Extracts Collected from Algerian Sahara’s Flora. Orient. Pharm. Exp. Med. 2019, 19(3), 299–310. DOI: 10.1007/s13596-019-00365-1.
  • Benhassine, I.; Ouafi, S.; Eras, J.; Harrat, Z.; Bouslama, Z.; Canela-Garayoa, R. Anti-inflammatory, analgesic activities and phytochemical study of Traganum nudatum Delile. Iran. J. Pharm. Sci. 2021, 17(3), 1–22.
  • Daradka, H. M.; Aljohani, H. A.; Alotaib, M. K.; Khabour, O. F.; Eskandrani, A. A.; Alsharif, S. M.; Al-Shdefat, R. Protective Effects of Traganum Nudatum Against Oxidative DNA Damage in Human Lymphocytes. Int. Med. J. 2020, 25, 913–920.
  • Badawneh, M.; Aljamal, J.; Alsehli, B.; Daradka, H. Antidiabetic Effect of Ethanolic Extract of Traganum Nudatum on Alloxan Induced Diabetics Wistar Rats. IJBPAS. 2017, 6, 918–930.
  • Bindu, J.; Narendhirakannan, R. T. Role of Medicinal Plants in the Management of Diabetes Mellitus: A Review. 3 Biotech. 2019, 9(1), 4. DOI: 10.1007/s13205-018-1528-0.
  • Maatalah, M. B.; Bouzidi, N. K.; Bellahouel, S.; Merah, B.; Fortas, Z.; Soulimani, R.; Saidi, S.; Derdour, A. Antimicrobial Activity of the Alkaloids and Saponin Extracts of Anabasis Articulate. J. Biotechnol. Pharm. Res. 2012, 3(3), 54–57.
  • Kambouche, N.; Merah, B.; Derdour, A.; Bellahouel, S.; Younos, C.; Soulimani, R. Activité antihyperglycémiante d’un stérol β-sitoglucoside isolé de la plante Anabasis articulata (Forssk) Moq. Phytothérapie. 2011, 9(1), 2–6. DOI: 10.1007/s10298-010-0603-4.
  • Abudalsahib, W.; Abd, A.; Jumaa, B. Antiangiogenic Activity of Iraqi Anabasis articulata Stems In vivo Study. Int. J. Sci. Res. 2016, 5(9). DOI: 10.21275/ART20161534.
  • Chikhi, I.; Allali, H.; Dib, M. E. A.; Medjdoub, H.; Tabti, B. Antidiabetic activity of aqueous leaf extract of Atriplex halimus L.(Chenopodiaceae) in streptozotocin–induced diabetic rats. Asian Pac. J. Trop. Dis. 2014, 4(3), 181–184. DOI: 10.1016/S2222-1808(14)60501-6.
  • Bylka, W.; Stobiecki, M.; Frański, R. Sulphated Flavonoid Glycosides from Leaves of Atriplex Hortensis. Acta Physiol. Plant. 2001, 23(3), 285–290. DOI: 10.1007/s11738-001-0035-8.
  • Tran, T. M. T.; Nguyen, T. B.; Winterhalter, P.; Jerz, G. Off-Line ESI-MS/MS Profiling of Betalains and Flavonoid Glycosides Isolated from (Fruit) Opuntia Stricta Var. Dillenii and (Vegetable) Atriplex Hortensis Var. Rubra by Countercurrent Chromatography. Vietnam. J. Sci. Technol. Eng. 2022, 64(1), 20–26. DOI: 10.31276/VJSTE.64(1).20-26.
  • Yılmaz, P. K.; Kolak, U. Determination of Phenolic Acids in Atriplex Hortensis L. by Novel Solid-Phase Extraction and High-Performance Liquid Chromatography. Anal. Lett. 2016, 49(14), 2157–2164. DOI: 10.1080/00032719.2016.1145231.
  • Abd-ElGawad, A.; El Gendy, A. E.-N.; El-Amier, Y.; Gaara, A.; Omer, E.; Al-Rowaily, S.; Assaeed, A.; Al-Rashed, S.; Elshamy, A. Essential Oil of Bassia muricata: Chemical Characterization, Antioxidant Activity, and Allelopathic Effect on the Weed Chenopodium Murale. Saudi J. Biol. Sci. 2020, 27(7), 1900–1906. DOI: 10.1016/j.sjbs.2020.04.018.
  • Kamel, M. S.; Mohamed, K. M.; Hassanean, H. A.; Ohtani, K.; Kasai, R.; Yamasaki, K. Acylated Flavonoid Glycosides from Bassia muricata. Phytochemistry. 2001, 57(8), 1259–1262. DOI: 10.1016/S0031-9422(01)00240-0.
  • Shaker, K. H.; Al Jubiri, S. M.; Abd El-Hady, F. K.; Al-Sehemi, A. G. New Compounds from Bassia muricata and Fagonia Indica. Int J. Pharm Sci. Rev. Res. 2013, 23(1), 231–236.
  • Kumar, S.; Kumari, S.; Dubey, N.; Usha, D. Anti-Diabetic and Haematinic Effects of Beetroot Juice (Beta Vulgaris L.) in Alloxan Induced Type-1 Diabetic Albino Rats. J. Diabetes Res. Ther. 2020, 6(1), 1–3. DOI: 10.16966/2380-5544.150.
  • Hariharan, G.; Gan, R.-Y.; Vinitha, S. J.; Keerthana, K.; Sridharan, G.; Li, H.-B.; John, N. A. A.; Gandhi, G. R.; Gurgel, R. Q.; Jothi, G. The Antidiabetic Potential of Chenopodium album Linn.(chenopodiaceae) inIn Vitro and in vivo Studies. In Nanophytomedicine; CRC Press: 2020; pp. 75–88. doi: 10.1201/9781003231745
  • Kandsi, F.; Conte, R.; Marghich, M.; Lafdil, F. Z.; Alajmi, M. F.; Bouhrim, M.; Mechchate, H.; Hano, C.; Aziz, M.; Gseyra, N. Phytochemical Analysis, Antispasmodic, Myorelaxant, and Antioxidant Effect of Dysphania Ambrosioides (L.) Mosyakin and Clemants Flower Hydroethanolic Extracts and Its Chloroform and Ethyl Acetate Fractions. Molecules. 2021, 26(23), 7300. DOI: 10.3390/molecules26237300.
  • Kasali, F. M.; Kadima, J. N.; Tusiimire, J.; Ajayi, C. O.; Agaba, A. G. Effects of the Oral Administration of Aqueous and Methanolic Leaf Extracts of Chenopodium ambrosioides L.(Amaranthaceae) on Blood Glucose Levels in Wistar Rats. J. Exp. Pharmacol. 2022, 2022, 139–148. DOI: 10.2147/JEP.S35.
  • Hussein Ahmed, O.; Hamad, M.; Jaafar, N. Phytochemical Investigation of Chenopodium Murale (Family: Chenopodiaceae) Cultivated in Iraq, Isolation and Identification of Scopoletin and Gallic Acid. Asian J. Pharm. Clin. Res. 2017, 10(11), 70. DOI: 10.22159/ajpcr.2017.v10i11.20504.
  • Ghorab, H.; Khettaf, A.; Lehbili, M.; Kabouche, A.; Magid, A. A.; Harakat, D.; Voutquenne-Nazabadioko, L.; Kabouche, Z. A New Cardenolide and Other Compounds from Salsola Tetragona. Nat. prod. communicat. 2017, 12(1), 1934578X1701200102. DOI: 10.1177/1934578X1701200102.
  • Gibbons, S.; Mathew, K.; Gray, A. I. A Caffeic Acid Ester from Halocnemum Strobilaceum. Phytochemistry. 1999, 51(3), 465–467. DOI: 10.1016/S0031-9422(99)00007-2.
  • Mariem, S.; Mariam, K. Antioxidant and Antimicrobial Acti Fractions and Their Related Bioactive M. Res. J. Recent Sci. 2018, 7(7), 1–9.
  • El-Shazly, A.; Wink, M. Tetrahydroisoquinoline and β-carboline alkaloids from Haloxylon articulatum (Cav.) Bunge (Chenopodiaceae). Zeitschrift für Naturforschung C. 2003, 58(7–8), 477–480. DOI: 10.1515/znc-2003-7-805.
  • Al-Snafi, A. E.; Majid, W. J.; Talab, T. A.; Al-Battat, A. Medicinal Plants with Antidiabetic Effects-An Overview (Part 1). IOSR J. Pharm. 2019, 9(3), 9–46.
  • Haque, M. E.; Alam, M. B.; Hossain, M. S. The Efficacy of Cucurbitane Type Triterpenoids, Glycosides and Phenolic Compounds Isolated from Momordica Charantia: A Review. Int. J. Pharm. Sci. Res. 2011, 2(5), 1135.
  • Qi, L.-W.; Liu, E.-H.; Chu, C.; Peng, Y.-B.; Cai, H.-X.; Li, P. Anti-Diabetic Agents from Natural Products—An Update from 2004 to 2009. Curr. Topics. Med. Chem. 2010, 10(4), 434–457. DOI: 10.2174/156802610790980620.
  • Zou, W.; Tang, Z.; Long, Y.; Xiao, Z.; Ouyang, B.; Liu, M.; Fructus, K. The Fruit of Common Potherb Kochia Scoparia (L.) Schrad: A Review on Phytochemistry, Pharmacology, Toxicology, Quality Control, and Pharmacokinetics. Evid. Based Complement. Altern. Med. 2021, 2021, 1–17. DOI: 10.1155/2021/5382684.
  • Kim, S.; Lee, E.-Y.; Hillman, P. F.; Ko, J.; Yang, I.; Nam, S.-J. Chemical structure and biological activities of secondary metabolites from Salicornia europaea L. Molecules. 2021, 26(8), 2252. DOI: 10.3390/molecules26082252.
  • Murshid, S. S.; Atoum, D.; Abou-Hussein, D. R.; Abdallah, H. M.; Hareeri, R. H.; Almukadi, H.; Edrada-Ebel, R. Genus Salsola: Chemistry, Biological Activities and Future Prospective—A Review. Plants. 2022, 11(6), 714. DOI: 10.3390/plants11060714.
  • Shaheen, S. M. Phytochemical Profiling and Evaluation of Antioxidant and Antidiabetic Activity of Methanol Extract of Spinach (Spinacia Oleracea L.) Leaves. Int. J .Pharm. Sci .Scient. Res. 2017, 3, 8–24.
  • Shamim, T.; Asif, H. M.; Shaheen, G.; Sumreen, L.; Ayaz, S.; Qureshi, T.; Ghauri, A. O.; Ali, T.; Ahmad, M.; Sajid, F. Anti-Diabetic Potential of Indigenous Medicinal Plants of Cholistan Desert, Pakistan: A Review. Rev. Diabetic Studies. 2022, 18(2), 93–99. DOI: 10.1900/RDS.2022.18.93.
  • Suthar, R.; Solanki, H. Phytochemical Screening of Halophytic Plant Suaeda Fruticosa (L.) Forssk. Ex JF Gmel. Int. Assoc. Biologicals Comput. Dig. 2022, 1(2), 308–313. DOI: 10.56588/iabcd.v1i2.84.
  • Patra, J.; Dhal, N.; Thatoi, H. In vitro Bioactivity and Phytochemical Screening of Suaeda Maritima (Dumort): A Mangrove Associate from Bhitarkanika, India. Asian Pac. J. Trop. Med. 2011, 4(9), 727–734. DOI: 10.1016/S1995-7645(11)60182-X.
  • Mohammed, H. A.; Al-Omar, M. S.; El-Readi, M. Z.; Alhowail, A. H.; Aldubayan, M. A.; Abdellatif, A. A. Formulation of Ethyl Cellulose Microparticles Incorporated Pheophytin a Isolated from Suaeda Vermiculata for Antioxidant and Cytotoxic Activities. Molecules. 2019, 24(8), 1501. 1501. DOI: 10.3390/molecules24081501.
  • Mohammed, S. A.; Khan, R. A.; El-Readi, M. Z.; Emwas, A.-H.; Sioud, S.; Poulson, B. G.; Jaremko, M.; Eldeeb, H. M.; Al-Omar, M. S.; Mohammed, H. A. Suaeda Vermiculata Aqueous-Ethanolic Extract-Based Mitigation of CCl4-Induced Hepatotoxicity in Rats, and HepG-2 and HepG-2/ADR Cell-Lines-Based Cytotoxicity Evaluations. Plants. 2020, 9(10), 1291. DOI: 10.3390/plants9101291.
  • Lachkar, N.; Lamchouri, F.; Bouabid, K.; Boulfia, M.; Senhaji, S.; Stitou, M.; Toufik, H. Mineral Composition, Phenolic Content, and in vitro Antidiabetic and Antioxidant Properties of Aqueous and Organic Extracts of Haloxylon Scoparium Aerial Parts. Evid. Based Complement. Altern. Med. 2021, 2021, 1–20. DOI: 10.1155/2021/9011168.
  • Alam, S.; Sarker, M. M. R.; Sultana, T. N.; Chowdhury, M. N. R.; Rashid, M. A.; Chaity, N. I.; Zhao, C.; Xiao, J.; Hafez, E. E.; Khan, S. A. Antidiabetic Phytochemicals from Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13, 13. DOI: 10.3389/fendo.2022.800714.
  • Elberry, A. A.; Harraz, F. M.; Ghareib, S. A.; Gabr, S. A.; Nagy, A. A.; Abdel-Sattar, E. Methanolic extract of Marrubium vulgare ameliorates hyperglycemia and dyslipidemia in streptozotocin-induced diabetic rats. Int. J. Diabetes Mellitus. 2015, 3(1), 37–44. DOI: 10.1016/j.ijdm.2011.01.004.
  • Organization, W. H. WHO Guidelines on Good Agricultural and Collection Practices [GACP] for Medicinal Plants. World Health Organ. 2003, 80.