2,062
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phytochemical analysis, antioxidant, antimicrobial, and toxicity studies of Schima wallichii growing in Nepal

, , &
Pages 273-285 | Received 17 Aug 2023, Accepted 05 Jan 2024, Published online: 04 Feb 2024

References

  • Namdeo, A. G. Cultivation of Medicinal and Aromatic Plants. In Natural Products and Drug Discovery; Mandal, S. C. Mandal, V.: Konishi, T., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 525–553.
  • Shi, Q.; Li, L.; Huo, C.; Zhang, M.; Wang, Y. Study on Natural Medicinal Chemistry and New Drug Development. Zhongcaoyao = Chinese Trad. & Herb. Drugs. 2010, 41(10), 1583–1589.
  • Thomas, E.; Vandebroek, I.; Sanca, S.; Van Damme, P. Cultural Significance of Medicinal Plant Families and Species Among Quechua Farmers in Apillapampa, Bolivia. J. Ethnopharmacol. 2009, 122(1), 60–67. DOI: 10.1016/j.jep.2008.11.021.
  • Vuolo, M. M.; Lima, V. S.; Maróstica Junior, M. R. Phenolic Compounds: Structure. In Classification and Antioxidant Power in Bioactive Compounds; Segura-Campos, M. R., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50.
  • Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discovery. 2015, 14(2), 111–129. DOI: 10.1038/nrd4510.
  • Allkin, B. Useful Plants- Medicines: At Least 28,187 Plant Species are Currently Recorded as Being of Medicinal Use. In State of the World’s Plants 2017; the Board of Trustees of the Royal Botanic Gardens, Royal Botanic Gardens; Kathy J. W., Eds.; Kew: London, UK, 2017; 22–29.
  • Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. F. R. Antioxidants, and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4(8), 118. DOI: 10.4103/0973-7847.70902.
  • Bagchi, K.; Puri, S. Free Radicals and Antioxidants in Health and Disease: A Review. East. Mediterr. Health J. 1998, 4(2), 350–360. DOI: 10.26719/1998.4.2.350.
  • Phaniendra, A.; Jestadi, D. B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30(1), 11–26. DOI: 10.1007/s12291-014-0446-0.
  • Halliwell, B.; Rice-Evans, C.; Halliwell, B.; Lunt, G. G. How to Characterize an Antioxidant: An Update. Biochem. Soc. Symp. 1995, 61, 73–101. DOI: 10.1042/bss0610073.
  • Wang, H.; Cao, G.; Prior, R. L. Total Antioxidant Capacity of Fruits. J. Agric. Food Chem. 1996, 44(3), 701–705. DOI: 10.1021/jf950579y.
  • Cosgrove, S. E. The Relationship Between Antimicrobial Resistance and Patient Outcomes: Mortality, Length of Hospital Stay, and Health Care Costs. Clinical Infect. Disease. 2006, 42(Supplement 2), S82–S89. DOI: 10.1086/499406.
  • Brown, E. D.; Wright, G. D. Antibacterial Drug Discovery in the Resistance Era. Nature. 2016, 529(7586), 336–343. DOI: 10.1038/nature17042.
  • Payne, D. J.; Gwynn, M. N.; Holmes, D. J.; Pompliano, D. L. Drugs for Bad Bugs: Confronting the Challenges of Antibacterial Discovery. Nat. Rev. Drug Discovery. 2007, 6(1), 29–40. DOI: 10.1038/nrd2201.
  • Nethathe, B. B.; Ndip, R. N. Bioactivity of Hydnora Africana on Selected Bacterial Pathogens: Preliminary Phytochemical Screening. African J. Microbial Res. 2011, 5(18), 2820–2826. DOI: 10.5897/AJMR11.566.
  • Poppenga, R. H. Poisonous Plants. In Molecular, Clinical, and Environmental Toxicology; Luch, A., Ed.; Experientia Supplementum; Birkhäuser Basel: Basel, Switzerland, 2010; Vol. 100, pp. 123–175.
  • Hung, O. L.; Lewin, N. A. Herbal Preparations. In Goldfrank’s Toxicologic Emergencies; Flomenbaum, N. E., Howland, M. A., Gold-Frank, L. R., Lewin, N. A., Hoffman, R. S. Nelson, L. S., Eds.; McGraw Hill: New York, NY, 2001; pp. 664–684.
  • Lagarto Parra, A.; Silva Yehbra, R.; Guerra Sardiñas, I.; Iglesias Buela, L. Comparative Study of the Assay of Artemia Salina L. and the Estimate of the Medium Lethal Dose (LD50 Value) in Mice, to Determine Oral Acute Toxicity of Plant Extracts. Phytomedicine. 2001, 8(5), 395–400. DOI: 10.1078/0944-7113-00044.
  • Tang, C. Q.; Han, P.-B.; Li, S.; Shen, L.-Q.; Huang, D.-S.; Li, Y.-F.; Peng, M.-C.; Wang, C.-Y.; Li, X.-S.; Li, W., et al. Species Richness, Forest Types and Regeneration of Schima in the Subtropical Forest Ecosystem of Yunnan, Southwestern China. For. Ecosyst. 2020, 7(1), 1–19. DOI: 10.1186/s40663-020-00244-1.
  • Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforestry Database: A Tree Reference and Selection Guide. Version 4; World Agroforestry Centre: Kenya, 2009.
  • Thapa, L. B.; Kaewchumnong, K.; Sinkkonen, A.; Sridith, K. Plant Invasiveness, and Target Plant Density: High Densities of Native Schima Wallichii. Seedlings Red. Neg. Eff. Of Invasive Ageratina Adenophora. Weed Res. 2017, 57(2), 72–80. DOI: 10.1111/wre.12238.
  • Dewanjee, S.; Maiti, A.; Sahu, R.; Dua, T. K.; Mandal, S. C. Study of Anti-Inflammatory and Antinociceptive Activity of Hydroalcoholic Extract of Schima Wallichii Bark. Pharm. Biol. 2009, 47(5), 402–407. DOI: 10.1080/13880200902758824.
  • Khuankaew, S.; Srithi, K.; Tiansawat, P.; Jampeetong, A.; Inta, A.; Wangpakapattanawong, P. Ethnobotanical Study of Medicinal Plants Used by Tai Yai in Northern Thailand. J. Ethnopharmacol. 2014, 151(2), 829–838. DOI: 10.1016/j.jep.2013.11.033.
  • Dewanjee, S.; Maiti, A.; Majumdar, R.; Majumdar, A.; Mandal, S. C. Evaluation of Antimicrobial Activity of Hydroalcoholic Extract of Schima wallichii Bark. Pharmacologyonline. 2008, 1, 523–528.
  • Yunus, S.; Chanu, M. B.; Biswas, D.; Laisharm, S.; Deb, L.; Talukdar, N. C.; Borah, J. G. Anti-Diabetic Potential of Selected Ethno-Medicinal Plants of North East India. J. Ethnopharmacol. 2015, 171, 37–41. DOI: 10.1016/j.jep.2015.05.030.
  • Bhattacharjee, M. I.; Vitolu Sema, Y.; Pratimsarma, M. Study on Multipotent Medicinal Aspects of Schima Wallichii (Bark) from Nagaland, NE India. Asian J. Pharm. Clin. Res. 2019, 12(3), 155–158. DOI: 10.22159/ajpcr.2019.v12i3.29288.
  • Joshi, K. Leaf Flavonoid Aglycone Patterns, Ethnobotany and Conservation of Schima Wallichii; Theaceae). Ecoprin, 2007; Vol. 13, pp. 9–13.
  • Joshi, A. R.; Edington, J. M. The Uses of Medicinal Plants by Two Village Communities in the Central Development Region of Nepal. Econ. Bot. 1990, 44(10), 71–83. DOI: 10.1007/BF02861069.
  • Coburn, B. Some Native Medicinal Plants of Western Gurungs. Kailash. 1984, 11(1–2), 55–87.
  • Siwakoti, M.; Siwakoti, S. Ethnomedicinal Uses of Plants Among the Satar Tribes of Nepal. In Ethnobotany and Medicinal Plants of Indian Subcontinent; Mahaehwari, J. K., Ed.; Scientific Publishers: Jodhpur, India, 2000; pp. 79–108.
  • Mallikharjuna, P. B.; Rajanna, L. N.; Seetharam, Y. N.; Sharanabasappa, G. K. Phytochemical Studies of Strychnos Potatorum L.F.- a Medicinal Plant. J. Chem. 2007, 4(4), 510–518. DOI: 10.1155/2007/687859.
  • Harborne, J. B. In Phytochemical Methods. Chapman Hall: London, 1998.
  • Ainsworth, E. A.; Gillespie, K. M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2(4), 875–877. DOI: 10.1038/nprot.2007.102.
  • Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food. Chem. 1999, 64(4), 555–559. DOI: 10.1016/S0308-8146(98)00102-2.
  • Meyer, B. N.; Ferrigni, N. R.; Putnam, J. E.; Jacobsen, L. B.; Nichols, D. E.; McLaughlin, J. L. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta. med. 1982, 45(5), 31–34. DOI: 10.1055/s-2007-971236.
  • Abinaya, M.; Vaseeharan, B.; Divya, M.; Sharmili, A.; Govindarajan, M.; Alharbi, N. S.; Kadaikunnan, S.; Khaled, J. M.; Benelli, G. Bacterial Exopolysaccharide (EPS)-Coated ZnO Nanoparticles Showed High Antibiofilm Activity and Larvicidal Toxicity Against Malaria and Zika Virus Vectors. J. Trace Elem. Med. Biol. 2018, 45, 93–103. DOI: 10.1016/j.jtemb.2017.10.002.
  • Cotelle, N.; Bernier, J. –. L.; Catteau, J.-P.; Pommery, J.; Wallet, J.-C.; Gaydou, F. M. Antioxidant Properties of Hydroxy-Flavones. Free Radical Biol. Med. 1996, 20(1), 35–43. DOI: 10.1016/0891-5849(95)02014-4.
  • Diantini, A.; Subarnas, A.; Lestari, K.; Halimah, E. H.; Susilawati, Y.; Supriyatna, S.; Julaeha, E.; Achmad, T. H.; Suradji, E. W.; Yamazaki, C., et al. Kaempferol-3-O-Rhamnoside Isolated from the Leaves of Schima Wallichii Korth. Inhibits MCF-7 Breast Cancer Cell Proliferation Through Activation Of The Caspase Cascade Pathway. Oncology Letters. 2012, 3(5), 1069–1072. DOI: 10.3892/ol.2012.596.
  • Dai, J.; Mumper, R. J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 2010, 15(10), 7313–7352. DOI: 10.3390/molecules15107313.
  • Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8(9), 950–988. DOI: 10.3390/i8090950.
  • Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 1–16. DOI: 10.1155/2013/162750.
  • Gul, Z.; Akbar, A.; Naseem, M.; Khan Achakzai, J.; Ur Rehman, Z.; Ahmad Khan, N. Phytonutrient and Antinutrient Components Profiling of Berberis Baluchistanica Ahrendt Bark and Leaves. J. King Saud Univ. Sci. 2023, 35(2), 102517. DOI: 10.1016/j.jksus.2022.102517.
  • Das, S.; Bala, A.; Bhowmik, M.; Ghosh, L. K. Attenuation of Reactive Nitrogen Species by Different Flavonoids Enriched Fractions of Schima Wallichii. Asian Pac. J. Trop. Biomed. 2012, 2(2), S632–S636. DOI: 10.1016/S2221-1691(12)60287-1.
  • Bibi, N.; Shah, M. H.; Khan, N.; Al-Hashimi, A.; Elshikh, M. S.; Iqbal, A.; Ahmad, S.; Abbasi, A. M. Variations in Total Phenolic, Total Flavonoid Contents, and Free Radicals’ Scavenging Potential of Onion Varieties Planted Under Diverse Environmental Conditions. Plants. 2022, 11(7), 950. DOI: 10.3390/plants11070950.
  • Contreras-Guzmán, E. S.; Strong, F. C. Determination of Tocopherols (Vitamin E) by Reduction of Cupric Ion. J. Association. Offi. Anal. Chem. 1982, 65(5), 1215–1221. DOI: 10.1093/jaoac/65.5.1215.
  • Alali, F. Q.; Tawaha, K.; El-Elimat, T.; Syouf, M.; El-Fayad, M.; Abulaila, K.; Nielsen, S. J.; Wheaton, W. D.; Falkinham, J. O.; Oberlies, N. H. Antioxidant Act. And Total Phenolic Content Of Aqueous & Meth. Ext. Jordanian Plants: An ICBG. Project. Nat Product Res. 2007, 21(12), 1121–1131. DOI: 10.1080/14786410701590285.
  • Zehiroglu, C.; Ozturk Sarikaya, S. B. The Importance of Antioxidants and Place in Today’s Scientific and Technological Studies. J. Food Sci. Technol. 2019, 56(11), 4757–4774. DOI: 10.1007/s13197-019-03952-x.
  • Dwivedi, M. K.; Sonter, S.; Mishra, S.; Patel, D. K.; Singh, P. K. A. Antibacterial Activity, and Phytochemical Characterization of Carica papaya Flowers. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9(23), 1–11. DOI: 10.1186/s43088-020-00048-w.
  • Sarbadhikary, S. B.; Bhowmik, S.; Datta, B. K.; Mandal, N. C. Antimicrobial and Antioxidant Activity of Leaf Extracts of Two Indigenous Angiosperm Species of Tripura. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4(8), 643–655.
  • Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S. F.; Nabavi, S. M. Phytochemicals for Human Disease: An Update on Plant-Derived Compounds Antibacterial Activity. Microbiol. Res. 2017, 196, 44–68. DOI: 10.1016/j.micres.2016.12.003.
  • Miceli, N.; Marino, A.; Köroğlu, A.; Cacciola, F.; Dugo, P.; Mondello, L.; Taviano, M. F. Comparative Study of the Phenolic Profile, Antioxidant and Antimicrobial Activities of Leaf Extracts of Five Juniperus L. (Cupressaceae) Taxa Growing in Turkey. Nat. Prod. Res. 2020, 34(11), 1636–1641. DOI: 10.1080/14786419.2018.1523162.
  • Bennett, R. N.; Wallsgrove, R. M. Secondary Metabolites in Plant Defence Mechanisms. New. Phytol. 1994, 127(4), 617–633. DOI: 10.1111/j.1469-8137.1994.tb02968.x.