859
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Milk protein based encapsulation of probiotics and other food material: comprehensive review

, , , , , , , , & show all
Pages 245-262 | Received 31 Aug 2023, Accepted 05 Jan 2024, Published online: 04 Feb 2024

References

  • Livney, Y. D. Milk Proteins as Vehicles for Bioactives. Curr. Opin. Colloid. Interface Sci. 2010, 15(1–2), 73–83. DOI: 10.1016/j.cocis.2009.11.002.
  • Augustin, M. A.; Udabage, P. Influence of Processing on Functionality of Milk and Dairy Proteins. Adv. Food Nutr. Res. 2007, 53, 1–38.
  • Augustin, M. A.; Sanguansri, L.; Shan, Z.; Weerakkody, R.; Yung, D. Y. Milk Protein-Based Microencapsulated Bioactive for Improving the Nutritive Value of Foods; IDF World Dairy Summit, Cape Town:South Africa2012 4–8 November 2012
  • Tavares, G. M.; Croguennec, T.; Carvalho, A. F.; Bouhallab, S. Milk Proteins as Encapsulation Devices and Delivery Vehicles: Applications and Trends. Trends Food Sci. Technol. 2014, 37(1), 5–20. DOI: 10.1016/j.tifs.2014.02.008.
  • Heidebach, T.; Först, P.; Kulozik, U. Microencapsulation of Probiotic Cells for Food Applications. Crit. Rev. Food Sci. Nutr. 2012, 52(4), 291–311. DOI: 10.1080/10408398.2010.499801.
  • El-Salam MH, A.; El-Shibiny, S. Formation and Potential Uses of Milk Proteins as Nano Delivery Vehicles for Nutraceuticals: A Review. Int. J Dairy Technol. 2012, 65(1), 13–21. DOI: 10.1111/j.1471-0307.2011.00737.x.
  • Hernández, H. EU R&D Scoreboard: the 2012 EU industrial R&D investment scoreboard. 2013.
  • Bovetto, L.; Schmitt, C. J. E.; Beaulieu, M.; Carlier, N.; Unterhaslberger, G. Nanoparticulated Whey Proteins. European Patent Office, EP 1 046 A2. MANUS. ACCEP. ACCEP. MANUS. 2007, 31.
  • Danino, D.; Livney, Y. D.; Ramon, O.; Portnoy, I.; Cogan, U. (2011). Beta-Casein Assemblies for Enrichment of Food and Beverages and Methods for Preparation Thereof. United States Patent, US 2011/0038987 A1.
  • Livney, Y. D.; Dalgleish, D. G. (2009). Casein Micelles for Nanoencapsulation of Hydrophobic Compounds. United States Patent, US 2009/0311329 A1.
  • Schmitt, C. J. E.; Bovetto, L. Whey Protein Vehicle for Active Agent Delivery. European Patent Off, EP. 2007, 1, 839 498 A1.
  • Sekhon, B. S. Food Nanotechnology - an Overview. Nanotechn, Sci And 946 Applic. 2010, 3, 1–15. DOI: 10.2147/NSA.S8677.
  • Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng. Rev. 2015, 7(4), 452–490. DOI: 10.1007/s12393-014-9106-7.
  • Xie, Q.; Liu, G.; Zhang, Y. Edible Films/Coatings Containing Bioactive Ingredients with Micro/Nano Encapsulation: A Comprehensive Review of Their Fabrications, Formulas, Multifunctionality and Applications in Food Packaging. Crit. Rev. Food Sci. Nutr. 2022, 1–38. DOI: 10.1080/10408398.2022.2153794.
  • Augustin, M. A.; Sanguansri, L. Encapsulation of Bioactives. In Food Materials Science—Principles and Practice; Aguilera, J. M. Lillford, P. J., Eds.; Springer: New York, 2008; p. 577601.
  • Augustin, M. A.; Hemar, Y. Nano- and Micro-Structured Assemblies for Encapsulation of Food Ingredients. Chem. Soc. Rev. 2009, 4, 902912. DOI: 10.1039/B801739P.
  • Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of Probiotic Living Cells: From Laboratory Scale to Industrial Applications. J. Food Eng. 2011, 104(4), 467–483. DOI: 10.1016/j.jfoodeng.2010.12.031.
  • Lara-Villoslada, F.; Olivares, M.; Xaus, J. The Balance Between Caseins and Whey Proteins in Cow’s Milk Determines Its Allergenicity. J. Dairy Sci. 2005, 88(5), 1654–1660. DOI: 10.3168/jds.S0022-0302(05)72837-X.
  • Fox, P. F. Advanced Dairy Chemistry. In Part A. Plenum Publishers, 3rd; Fox, P. F., and McSweeney, P. L. H., Eds.; New York, London: National University of Ireland. 2003; pp. 5–30.
  • Huma, N.; Ghaffar, F.; Rafiq, S.; Pasha, I.; Sameen, A.; Hayat, I.; Hussain, I. Characterization of Milk Proteins from Different Animal Species Through Gel Electrophoresis. Pak. J. Zool. 2018, 50(5), 1601–1998. DOI: 10.17582/journal.pjz/2018.50.5.sc6.
  • Chen, L.; Remondetto, G. E.; Subirade, M. Food Protein-Based Materials as Nutraceutical Delivery Systems. Trends Food Sci. Technol. 2006, 17(5), 272–283. DOI: 10.1016/j.tifs.2005.12.011.
  • In Fox, P. F.; McSweeney, P. L. M., Eds. Advances in Dairy Chemistry. In Vol 1A. Proteins. Basic Aspects; Springer: NY, 2013p. 548.
  • Brodkorb, A.; Doherty, S. Production of Microbeads E.G. Used in Vehicle for Delivering Active Agent to Lower Intestine of Subject by Providing Suspension of Denatured Whey Protein and Active Component, and Treating Suspension to Generate Microbeads. WO. 2010, 2010119041–A2.
  • Van Seeventer, P. B.; Geertjes, M. H.; Poortinga, A. T.; Vos, H. Encapsulating Edible Oil to Obtain Composition Used as Food Product, Comprises Providing Aqueous Solution of Whey Protein, Denaturing Whey Protein, Adding Reducing Sugar and Edible Oil, Emulsifying and Spray Drying the Solution. WO 20 11008079-A1. 2011.
  • Nakhasi, D. K.; Daniels, R. L.; Corbin, D. N.; Green, R. C. Microencapsulated Product, Useful E.G. in Consumable Product E.G. Beverage Comprising Sports Drink and Milk-Based Beverage, Comprises Core and Shells Comprising Protein and Carbohydrate. Us 2009004333-A1. 2009, 211–226.
  • Given, P.; Kohane, D. S.; Langer, R. S.; Yeo, Y.; Daniel Eseu, K.; Robeoteu Eseu, R. Complex Coacervate Delivery System Useful in E.G. Beverage Product Comprises Aqueous Dispersion of Complex Coacervates, Which Comprise Shell Containing Food-Grade Cationic Polymer and Anionic Polymer, and Core Containing Lipophilic Nutrient. Wo 2009029406-A1. 2009.
  • Pouzot, M.; Schmitt, C. J. E.; Mezzenga, R. Coated Denatured Supramolecular Protein Core Structure Useful in Food Composition E.G. Beverage, Yogurt and Ice Cream Comprises a Coating Comprising at Least a First Lipid Monolayer That is Electrostatically Bound to the Protein Core. EP. 2008, 1894477–A1.
  • Decker, E.; McClements, D. J.; Weiss, J. Stabilized Liposome Composition, E.G. for Increasing Shelf Life of Dairy Product, Comprises Biopolymer Component About Liposome Comprising Lipidic Compound and Having Portion Comprising Net Charge Opposite to That of Liposome. Wo 2009131672-A1. 2009.
  • Heidebach, T.; Forst, P.; Kulozik, U. Microencapsulation of Probiotic Cells by Means of Rennet-Gelation of Milk Proteins. Food Hydrocolloids. 2009a, 23(7), 1670–1677. DOI: 10.1016/j.foodhyd.2009.01.006.
  • Heidebach, T.; Forst, P.; Kulozik, U. Transglutaminase-Induced Caseinate Gelation for the Microencapsulation of Probiotic Cells. Int. Dairy. J. 2009b, 19(2), 77–84. DOI: 10.1016/j.idairyj.2008.08.003.
  • Young, S. L.; Sarda, X.; Rosenberg, M. Microencapsulating Properties of Whey Proteins. 1. Microencapsulation of Anhydrous Milk Fat. J. Dairy. Sci. 1993, 76(10), 2868–2877. DOI: 10.3168/jds.S0022-0302(93)77625-0.
  • Jimenez, M.; Garcia, H. S.; Beristain, C. I. Spray-Dried Encapsulation of Conjugated Linoleic Acid (CLA) with Polymeric Matrices. J. Sci. Food Agric. 2006, 86(14), 2431–2437. DOI: 10.1002/jsfa.2636.
  • Jimenez, M.; Garcia, H. S.; Beristain, C. I. Spray-drying microencapsulation and oxidative stability of conjugated linoleic acid. Eur. Food Res. Technol. 2004, 219(6), 588–592. DOI: 10.1007/s00217-004-0992-4.
  • Kontopidis, G.; Holt, C.; Sawyer, L. Invited Review: β-Lactoglobulin: Binding Properties, Structure, and Function. J. Dairy. Sci. 2004, 87(4), 785–796. DOI: 10.3168/jds.S0022-0302(04)73222-1.
  • Baranauskiene, R.; Venskutonis, P. R.; Dewettinck, D.; Verhe´, R. Properties of Oregano (Origanum Vulgare L.), Citronella (Cymbopogon Nardus G.) and Marjoram (Majorana Hortensis L.) Flavors Encapsulated into Milk Protein-Based Matrices. Food. Res. Int. 2006, 39(4), 413–425. DOI: 10.1016/j.foodres.2005.09.005.
  • Brückner, M.; Bade, M.; Kunz, B. Investigations into the Stabilization of a Volatile Aroma Compound Using a Combined Emulsification and Spray Drying Process. Eur. Food Res. Technol. 2007, 226(1–2), 137–146. DOI: 10.1007/s00217-006-0518-3.
  • Beaulieu, L.; Savoie, L.; Paquin, P.; Subirade, M. Elaboration and Characterization of Whey Protein Beads by an Emulsification/Cold Gelation Process: Application for the Protection of Retinol. Biomacromolecules. 2002, 3(2), 239–248. DOI: 10.1021/bm010082z.
  • Bayram, O. ¨. A.; Bayram, M.; Tekin, A. R. Whey Powder as a Carrier in Spray Drying of Sumac Concentrate. J. Food Process. Eng. 2008, 31(1), 105–119. DOI: 10.1111/j.1745-4530.2007.00168.x.
  • López-Rubio, A.; Lagaron, J. M. Whey Protein Capsules Obtained Through Electrospraying for the Encapsulation of Bioactives. Innovative Food Science Emerging Technologies. 2012, 13, 200–206. DOI: 10.1016/j.ifset.2011.10.012.
  • Gunasekaran, S.; Xiao, L.; Eleya, M. M. O. Whey Protein Concentrate Hydrogels as Bioactive Carriers. J. Appl. Polym. Sci. 2006, 99(5), 2470–2476. DOI: 10.1002/app.22838.
  • Holgado, F.; García‐Martínez, M. C.; Velasco, J.; Ruiz‐Méndez, M. V.; Márquez‐Ruiz, G. Microencapsulation of Conjugated Linoleic Acid (CLA)‐Rich Oil with Skimmed Milk Components Protects Against Polymerization. J. Am. Oil Chem. Soc. 2018, 95(11), 1399–1408. DOI: 10.1002/aocs.12146.
  • Kim, Y. D.; Morr, C. V. Microencapsulation properties of gum arabic and several food proteins: spray-dried orange oil emulsion particles. J. Agric. Food Chem. 1996, 44(5), 1314–1320. DOI: 10.1021/jf9503927.
  • Moreau, D. L.; Rosenberg, M. Oxidative Stability of Anhydrous Milkfat Microencapsulated in Whey Proteins. Journal Of Food Science. 1996, 61(1), 39–43. DOI: 10.1111/j.1365-2621.1996.tb14721.x.
  • Partanen, R.; Raula, J.; SEPPAnen, R. A. U. N. I.; Buchert, J.; Kauppinen, E.; Forssell, P. Effect of Relative Humidity on Oxidation of Flaxseed Oil in Spray Dried Whey Protein Emulsions. J. Agric. Food Chem. 2008, 56(14), 5717–5722. DOI: 10.1021/jf8005849.
  • Al-Nabulsi, A. A.; Han, J. H.; Liu, Z.; Rodrigues-Vieira, E. T.; Holley, R. A. Temperature-Sensitive Microcapsules Containing Lactoferrin and Their Action Against Carnobacterium Viridans on Bologna. J. Food Sci. 2006, 71(6), M208M214. DOI: 10.1111/j.1750-3841.2006.00103.x.
  • Gan, C.-H.; Cheng, L.-H.; Phuah, E.-T.; Chin, P.-N.; AlKarkhi, A. F. M.; Easa, A. M. Combined Cross-Linking Treatments of Bovine Serum Albumin Gel Beadlets for Controlled-Delivery of Caffeine. Food Hydrocoll. 2009, 23(5), 1398–1405. DOI: 10.1016/j.foodhyd.2008.09.009.
  • Farrell, H. M.; Malin, E. L.; Brown, E. M.; Qi, P. X. Casein Micelle Structure: What Can Be Learned from Milk Synthesis and Structural Biology? Curr. Opin. Colloid Interface Sci. 2006, 11(2–3), 135–147. DOI: 10.1016/j.cocis.2005.11.005.
  • Walstra, P.; Walstra, P.; Wouters, J. T.; Geurts, T. J. Dairy Science and Technology; Boca Raton: CRC press, 2005.
  • Vega, C. R. Y. H.; Roos, Y. H. Invited Review: Spray-Dried Dairy and Dairy-Like Emulsions—Compositional Considerations. J. Dairy Sci. 2006, 89(2), 383–401. DOI: 10.3168/jds.S0022-0302(06)72103-8.
  • Hogan, S. A.; McNamee, B. F.; O’Riordan, E. D.; O’Sullivan, M. Emulsification and Microencapsulation Properties of Sodium Caseinate/Carbohydrate Blends. Int. Dairy J. 2001, 11(3), 137–144. DOI: 10.1016/S0958-6946(01)00091-7.
  • Sahu, A.; Kasoju, N.; Bora, U. Fluorescence Study of the Curcumin−casein Micelle Complexation and Its Application as a Drug Nanocarrier to Cancer Cells. Biomacromolecules. 2008, 9(10), 2905–2912. DOI: 10.1021/bm800683f.
  • Abbasi, S.; Rahimi, S. Microwave-Assisted Encapsulation of Citric Acid Using Hydrocolloids. Int. J. Food Sci. Technol. 2008, 43(7), 1226–1232. DOI: 10.1111/j.1365-2621.2007.01595.x.
  • Abbasi, S.; Rahimi, S.; Azizi, M. Influence of microwave-microencapsulated citric acid on some sensory properties of chewing gum. J. Microencapsul. 2009, 26(1), 90–96. DOI: 10.1080/02652040802173677.
  • McClements, D. J. Protein-Stabilized Emulsions. Curr. Opin. Colloid Interface Sci. 2004, 9(5), 305–313. DOI: 10.1016/j.cocis.2004.09.003.
  • Damodaran, S. Protein Stabilization of Emulsions and Foams. Journal Of Food Science. 2005, 70(3), R54–R66. DOI: 10.1111/j.1365-2621.2005.tb07150.x.
  • Keogh, M. K.; O’Kennedy, B. T.; Kelly, J.; Auty, M. A.; Kelly, P. M.; Fureby, A.; Haahr, A. M. Stability to Oxidation of Spray-Dried Fish Oil Powder Microencapsulated Using Milk Ingredients. Journal Of Food Science. 2001, 66(2), 217–224. DOI: 10.1111/j.1365-2621.2001.tb11320.x.
  • Fa¨ldt, P.; Bergensta°hl, B. Spray-Dried Whey Protein/Lactose/Soybean Oil Emulsions. 1. Surface Composition and Particle Structure. Food Hydrocoll. 1996, 10(4), 421–429. DOI: 10.1016/S0268-005X(96)80020-8.
  • Pedersen, G. P.; Fa¨ldt, P.; Bergensta°hl, B.; Kristensen, H. G. Solid State Characterisation of a Dry Emulsion: A Potential Drug Delivery System. Int. J. Pharm. 1998, 171(2), 257–270. DOI: 10.1016/S0378-5173(98)00197-5.
  • Heinzelmann, K.; Franke, K. Using Freezing and Drying Techniques of Emulsions for the Microencapsulation of Fish Oil to Improve Oxidation Stability. Colloids Surf. B. 1999, 12(3–6), 223–229. 223229 Use of Milk Proteins for Encapsulation of Food Ingredients Chapter. DOI: 10.1016/S0927-7765(98)00077-0.
  • Vega, C.; Goff, H. D.; Roos, Y. H. Casein Molecular Assembly Affects the Properties of Milk Fat Emulsions Encapsulated in Lactose or Trehalose Matrices. Int. Dairy J. 2007, 17(6), 683–695. DOI: 10.1016/j.idairyj.2006.08.004.
  • Bylaitë, E.; Rimantas Venskutonis, P.; Maþdþierienë, R. Properties of Caraway (Carum Carvi L.) Essential Oil Encapsulated into Milk Protein-Based Matrices. Eur. Food Res. Technol. 2001, 212(6), 661–670. DOI: 10.1007/s002170100297.
  • Bédié, G. K.; Turgeon, S. L.; Makhlouf, J. Formation of Native Whey Protein Isolate–Low Methoxyl Pectin Complexes as a Matrix for Hydro-Soluble Food Ingredient Entrapment in Acidic Foods. Food Hydrocolloids. 2008, 22(5), 836–844. DOI: 10.1016/j.foodhyd.2007.03.010.
  • Chen, L.; Subirade, M. Alginate–Whey Protein Granular Microspheres as Oral Delivery Vehicles for Bioactive Compounds. Biomaterials. 2006, 27(26), 4646–4654. DOI: 10.1016/j.biomaterials.2006.04.037.
  • Chen, L.; Subirade, M. Effect of Preparation Conditions on the Nutrient Release Properties of Alginate–Whey Protein Granular Microspheres. Eur. J. Pharm. Biopharm. 2007, 65(3), 354–362. DOI: 10.1016/j.ejpb.2006.10.012.
  • Chen, H. D.; Weiss, J. C.; Shahidi, F. Nanotechnology in Nutraceuticals and Functional Foods. Food TechnologyVol. 60, 2006a, pp. 30–36.
  • Oliveira, A. C.; Moretti, T. S.; Boschini, C.; Baliero, J. C. C.; Freitas, L. A. P. D.; Freitas, O. D.; Fávaro-Trindade, C. S. Microencapsulation of B. Lactis (BI 01) and L. Acidophilus (LAC 4) by Complex Coacervation Followed by Spouted-Bed Drying. Drying Technol. 2007, 25(10), 1687–1693. DOI: 10.1080/07373930701590939.
  • Hsiao, H. C.; Lian, W. C.; Chou, C. C. Effect of Packaging Conditions and Temperature on Viability of Microencapsulated Bifidobacteria During Storage. J. Sci. Food Agric. 2004, 84(2), 134–139. DOI: 10.1002/jsfa.1616.
  • Lian, W.-C.; Hsiao, H.-C.; Chou, C.-C. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int. J. Food Microbiol. 2003, 86(3), 293–301. DOI: 10.1016/S0168-1605(02)00563-9.
  • Burin, L.; Jouppila, K.; Roos, Y. H.; Kansikas, J.; Buera, M. P. Retention of β-Galactosidase Activity as Related to Maillard Reaction, Lactose Crystallization, Collapse and Glass Transition in Low Moisture Whey Systems. Int. Dairy J. 2004, 14(6), 517–525. DOI: 10.1016/j.idairyj.2003.11.003.
  • Sheu, T. Y.; Rosenberg, M. Microstructure of Microcapsules Consisting of Whey Proteins and Carbohydrates. Journal Of Food Science. 1998, 63(3), 491–494. DOI: 10.1111/j.1365-2621.1998.tb15770.x.
  • Joint, F. A. O. WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada. 2002, 30(1), 16–22.
  • Jia, W.; Li, H.; Zhao, L.; Nicholson, J. K. Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discovery. 2008, 7(2), 123–129. DOI: 10.1038/nrd2505.
  • Pedretti, S. Probiotic market. Nutrafoods. 2013, 12, N18–N19. DOI: 10.1007/s13749-0134006x.
  • Galdeano, C. M.; de LeBlanc, A. D. M.; Carmuega, E.; Weill, R.; Perdigón, G. Mechanisms Involved in the Immunostimulation by Probiotic Fermented Milk. J. Dairy Res. 2009, 76(4), 446–454. DOI: 10.1017/S0022029909990021.
  • Dianawati, D.; Mishra, V.; Shah, N. P. Survival of Bifidobacterium longum 1941 Microencapsulated with Proteins and Sugars After Freezing and Freeze Drying. Food Res. Int. 2013, 51(2), 503–509. DOI: 10.1016/j.foodres.2013.01.022.
  • López, L. A. V. (2013) Influence of “added” whey protein isolates on probiotic properties of yoghurt culture bacteria and yoghurt properties. M.Sc. thesis, Louisiana State Univ. etd.lsu.edu/docs/available/etd-11152013 /LuisVargasThesis.pdf.
  • Rodrigues, D.; Rocha-Santos, T.; Sousa, S.; Gomes, A. M.; Pintado, M. M.; Malcata, F. X.; Lobo, J. S.; Silva, J. P.; Costa, P.; Amaral, M. H., et al. On the Viability of Five Probiotic Strains When Immobilized on Various Polymers. Int. J Dairy Technol.2011, 64(1), 137–144. DOI: 10.1111/j.1471-0307.2010.00627.x.
  • De Castro-Cislaghi, F. P. (2012). Carina Dos Reis, E. S.; Fritzen-Freire, C. B.; Lorenz, J. G.; Sant’anna, E. S. Sant’Anna, ES Bifidobacterium Bb-12 Microencapsulated by Spray Drying with Whey: Survival Under Simulated Gastrointestinal Conditions, Tolerance to NaCl, and Viability During Storage. J. Food Eng. 113(2), 186–193. DOI: 10.1016/j.jfoodeng.2012.06.006.
  • Reid, A. A.; Champagne, C. P.; Gardner, N.; Fustier, P.; Vuillemard, J. C. Survival in Food Systems of Lactobacillus Rhamnosus R011 Microentrapped in Whey Protein Gel Particles. J. Food Sci. 2007, 72(1), M31M37. DOI: 10.1111/j.1750-3841.2006.00222.x.
  • Burgain, J.; Gaiani, C.; Cailliez-Grimal, C.; Jeandel, C.; Scher, J. Encapsulation of Lactobacillus Rhamnosus GG in Microparticles: Influence of Casein to Whey Protein Ratio on Bacterial Survival During Digestion. Innov. Food Sci. Emerg. Technol. 2013, 19, 233242. DOI: 10.1016/j.ifset.2013.04.012.
  • Heidebach, T.; Forst, P.; Kulozik, U. Influence of Casein-Based Microencapsulation on Freeze-Drying and Storage of Probiotic Cells. J. Food Eng. 2010, 98(3), 309–316. DOI: 10.1016/j.jfoodeng.2010.01.003.
  • Picot, A.; Lacroix, C. Encapsulation of Bifidobacteria in Whey Protein-Based Microcapsules and Survival in Simulated Gastrointestinal Conditions and in Yoghurt. Int. Dairy. J. 2004, 14(6), 505–515. DOI: 10.1016/j.idairyj.2003.10.008.
  • Reid, A. A.; Vuillemard, J.; Britten, M.; Arcand, Y.; Farnworth, E.; Champagne, C. Microentrapment of Probiotic Bacteria in a Ca 2 + -Induced Whey Protein Gel and Effects on Their Viability in a Dynamic Gastro-Intestinal Model. J. Microencapsul. 2005, 22(6), 603–619. DOI: 10.1080/02652040500162840.
  • Crittenden, R.; Weerakkody, R.; Sanguansri, L.; Augustin, M. A. Synbiotic Microcapsules That Enhance Microbial Viability During Nonrefrigerated Storage and Gastrointestinal Tract. Appl. Environ. Microbiol. 2006, 72(3), 2280–2282. DOI: 10.1128/AEM.72.3.2280-2282.2006.
  • Miao, S.; Mills, S.; Stanton, C.; Fitzgerald, G. F.; Roos, Y.; Ross, R. P. Effect of Disaccharides on Survival During Storage of Freeze Dried Probiotics. Dairy Science & Technology. 2008, 88(1), 19–30. DOI: 10.1051/dst:2007003.
  • Ying, D. Y.; Schwander, S.; Weerakkody, R.; Sanguansri, L.; Gantenbein-Demarchi, C.; Augustin, M. A. Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: probiotic survival in fruit juice. J. Funct. Foods. 2013, 5(1), 98–105. DOI: 10.1016/j.jff.2012.08.009.
  • Bhatia, S.; Bhatia, S. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. Nat Polymer Drug Delivery Systems: Nanoparticles, Plants, And Algae. 2016, 33–93.
  • Mamusa, M.; Resta, C.; Sofroniou, C.; Baglioni, P. Encapsulation of Volatile Compounds in Liquid Media: Fragrances, Flavors, and Essential Oils in Commercial Formulations. Adv. Coll. Interf. Sci. 2021, 298, 102544. DOI: 10.1016/j.cis.2021.102544.
  • Ahmad, S. U.; Li, B.; Sun, J.; Arbab, S.; Dong, Z.; Cheng, F.; Zhang, J. Recent Advances in Microencapsulation of Drugs for Veterinary Applications. J Of Veteri Pharm And Therapeutics. 2021, 44(3), 298–312. DOI: 10.1111/jvp.12946.
  • McClements, D. J. Designing Biopolymer Microgels to Encapsulate, Protect and Deliver Bioactive Components: Physicochemical Aspects. Adv. Coll. Interf. Sci. 2017, 240, 31–59. DOI: 10.1016/j.cis.2016.12.005.
  • Picone, C. S. F.; Bueno, A. C.; Michelon, M.; Cunha, R. L. Development of a Probiotic Delivery System Based on Gelation of Water-In-Oil Emulsions. LWT. 2017, 86, 62–68. DOI: 10.1016/j.lwt.2017.07.045.
  • Nag, A.; Han, K. S.; Singh, H. Microencapsulation of Probiotic Bacteria Using pH-Induced Gelation of Sodium Caseinate and Gellan Gum. Int. Dairy J. 2011, 21(4), 247–253. DOI: 10.1016/j.idairyj.2010.11.002.
  • Heade, J.; Kent, R.; Bleiel, S. B.; Brayden, D. J. Entrapment of Hydrophilic and Hydrophobic Molecules in Beads Prepared from Isolated Denatured Whey Protein. Pharmaceutics. 2021, 13(7), 1001. DOI: 10.3390/pharmaceutics13071001.
  • Shi, L. E.; Li, Z. H.; Li, D. T.; Xu, M.; Chen, H. Y.; Zhang, Z. L.; Tang, Z. X. Encapsulation of Probiotic Lactobacillus Bulgaricus in Alginate–Milk Microspheres and Evaluation of the Survival in Simulated Gastrointestinal Conditions. J. Food Eng. 2013, 117(1), 99–104. DOI: 10.1016/j.jfoodeng.2013.02.012.
  • Qi, X.; Simsek, S.; Chen, B.; Rao, J. Alginate-Based Double-Network Hydrogel Improves the Viability of Encapsulated Probiotics During Simulated Sequential Gastrointestinal Digestion: Effect of Biopolymer Type and Concentrations. Int. J. Biol. Macromol. 2020, 165, 1675–1685. DOI: 10.1016/j.ijbiomac.2020.10.028.
  • Camelo-Silva, C.; Verruck, S.; Ambrosi, A.; Di Luccio, M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. Food Eng. Rev. 2022, 14(3), 462–490. DOI: 10.1007/s12393-022-09315-1.
  • Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A Review of the Microencapsulation Techniques for the Incorporation of Probiotic Bacteria in Functional Foods. Crit. Rev. Food Sci. Nutr. 2021, 61(9), 1515–1536. DOI: 10.1080/10408398.2020.1761773.
  • Azmi, N. A. N.; Elgharbawy, A. A.; Motlagh, S. R.; Samsudin, N.; Salleh, H. M. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes. 2019, 7(9), 617. DOI: 10.3390/pr7090617.
  • Ashaolu, T. J. Nanoemulsions for Health, Food, and Cosmetics: A Review. Environ. Chem. Lett. 2021, 19(4), 3381–3395. DOI: 10.1007/s10311-021-01216-9.
  • Ahmad, T.; Belwal, T.; Li, L.; Ramola, S.; Aadil, R. M.; Xu, Y.; Zisheng, L. Utilization of Wastewater from Edible Oil Industry, Turning Waste into Valuable Products: A Review. Trends Food Sci. Technol. 2020, 99, 21–33. DOI: 10.1016/j.tifs.2020.02.017.
  • Fadda, A.; Sanna, D.; Sakar, E. H.; Gharby, S.; Mulas, M.; Medda, S.; Durazzo, A. Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability. 2022, 14(2), 849. DOI: 10.3390/su14020849.
  • Luo, Y.; De Souza, C.; Ramachandran, M.; Wang, S.; Yi, H.; Ma, Z.; Zhang, L.; Lin, K. Precise Oral Delivery Systems for Probiotics: A Review. J. Controlled Release. 2022, 352, 371–384. DOI: 10.1016/j.jconrel.2022.10.030.
  • Chauhan, J.; Sharma, R. K. Synbiotic formulations with microbial biofilm, animal derived (casein, collagen, chitosan) and plant derived (starch, cellulose, alginate) prebiotic polymers: A review. Int. J. Biol. Macromol. 2023, 248, 125873. DOI: 10.1016/j.ijbiomac.2023.125873.
  • Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Drying Technol. 2020, 38(1–2), 235–258. DOI: 10.1080/07373937.2019.1653906.
  • Samborska, K.; Boostani, S.; Geranpour, M.; Hosseini, H.; Dima, C.; Khoshnoudi-Nia, S.; Jafari, S. M. Green Biopolymers from By-Products as Wall Materials for Spray Drying Microencapsulation of Phytochemicals. Trends Food Sci. Technol. 2021, 108, 297–325. DOI: 10.1016/j.tifs.2021.01.008.
  • Fiocco, D.; Longo, A.; Arena, M. P.; Russo, P.; Spano, G.; Capozzi, V. How Probiotics Face Food Stress: They Get by with a Little Help. Crit. Rev. Food Sci. Nutr. 2020, 60(9), 1552–1580. DOI: 10.1080/10408398.2019.1580673.
  • Jyothi, S. S.; Seethadevi, A.; Prabha, K. S.; Muthuprasanna, P.; Pavitra, P. Microencapsulation: a review. Int. J. Pharm. Biol. Sci. 2012, 3(2), 509–531.
  • Muir, V. G.; Burdick, J. A. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem. Rev. 2020, 121(18), 10908–10949. DOI: 10.1021/acs.chemrev.0c00923.
  • Moschakis, T.; Biliaderis, C. G. Biopolymer-Based Coacervates: Structures, Functionality and Applications in Food Products. Curr. Opin. Colloid Interface Sci. 2017, 28, 96–109. DOI: 10.1016/j.cocis.2017.03.006.
  • Gebara, C.; Chaves, K. S.; Ribeiro, M. C. E.; Souza, F. N.; Grosso, C. R.; Gigante, M. L. Viability of Lactobacillus acidophilus La5 in Pectin–Whey Protein Microparticles During Exposure to Simulated Gastrointestinal Conditions. Food Res. Int. 2013, 51(2), 872–878. DOI: 10.1016/j.foodres.2013.02.008.
  • Schell, D.; Beermann, C. Fluidized Bed Microencapsulation of Lactobacillus Reuteri with Sweet Whey and Shellac for Improved Acid Resistance and in-Vitro Gastro-Intestinal Survival. Food. Res. Int. 2014, 62, 308–314. DOI: 10.1016/j.foodres.2014.03.016.
  • Pimentel-González, D. J.; Campos-Montiel, R. G.; Lobato-Calleros, C.; Pedroza-Islas, R.; Vernon-Carter, E. J. Encapsulation of Lactobacillus Rhamnosus in Double Emulsions Formulated with Sweet Whey as Emulsifier and Survival in Simulated Gastrointestinal Conditions. Food. Res. Int. 2009, 42(2), 292–297. DOI: 10.1016/j.foodres.2008.12.002.
  • Hernández-Rodríguez, L.; Lobato-Calleros, C.; Pimentel-González, D. J.; Vernon-Carter, E. J. Lactobacillus Plantarum Protection by Entrapment in Whey Protein Isolate: K-Carrageenan Complex Coacervates. Food Hydrocoll. 2014, 36, 181–188. DOI: 10.1016/j.foodhyd.2013.09.018.
  • López-Rubio, A.; Lagaron, J. M. Whey Protein Capsules Obtained Through Electrospraying for the Encapsulation of Bioactives. Innovative Food Science Emerging Technologies. 2012, 13, 200–206. DOI: 10.1016/j.ifset.2011.10.012.
  • Wang, L.; Bohn, T. Health-Promoting Food Ingredients and Functional Food Processing. Nutrition, Well-Being And Health. 2012, 201–224.
  • Sun‐Waterhouse, D. The Development of Fruit‐Based Functional Foods Targeting the Health and Wellness Market: A Review. International Journal Of Food Science & Technology. 2011, 46(5), 899–920. DOI: 10.1111/j.1365-2621.2010.02499.x.
  • Ying, D. Y.; Sun, J.; Sanguansri, L.; Weerakkody, R.; Augustin, M. A. Enhanced Survival of Spray-Dried Microencapsulated Lactobacillus Rhamnosus GG in the Presence of Glucose. J. Food Eng. 2012, 109(3), 597–602. DOI: 10.1016/j.jfoodeng.2011.10.017.
  • Abd El-Salam, M. H.; El-Shibiny, S. Preparation and Properties of Milk Proteins-Based Encapsulated Probiotics: A Review. Dairy Science & Technology. 2015, 95(4), 393–412. DOI: 10.1007/s13594-015-0223-8.