488
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring protein derivative profiles in cheese whey through native Candida tropicalis fermentation

, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 367-380 | Received 02 Aug 2023, Accepted 08 Feb 2024, Published online: 22 Feb 2024

References

  • Pires, A. F.; Marnotes, N. G.; Rubio, O. D.; Garcia, A. C.; Pereira, C. D. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods. 2021, 10(5), 1067. Cited: in: PMID: 34066033. DOI: 10.3390/foods10051067.
  • Shah, A. M.; Tarfeen, N.; Mohamed, H.; Song, Y. Fermented Foods: Their Health-Promoting Components and Potential Effects on Gut Microbiota. Fermentation. 2023, 9(2), 118. DOI: 10.3390/fermentation9020118.
  • Nagarajan, M.; Rajasekaran, B.; Venkatachalam, K. Microbial Metabolites in Fermented Food Products and Their Potential Benefits. IFRJ. 2022, 29(3), 466–486. DOI: 10.47836/ifrj.29.3.01.
  • Romano, C.; Corsetti, G.; Flati, V.; Pasini, E.; Picca, A.; Calvani, R.; Marzetti, E.; Dioguardi, F. S. Influence of Diets with Varying Essential/Nonessential Amino Acid Ratios on Mouse Lifespan. Nutrients. 2019, 11(6), 1367. DOI: 10.3390/nu11061367.
  • Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V. N. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1445. DOI: 10.3390/ijms23031445.
  • Shen, F.; Sergi, C. Biochemistry, Amino Acid Synthesis and Degradation. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. [accessed Jun 16, 2023: http://www.ncbi.nlm.nih.gov/books/NBK559250/.
  • Maicas, S. The Role of Yeasts in Fermentation Processes. Microorganisms. 2020, 8(8), 1142. DOI: 10.3390/microorganisms8081142.
  • Dinika, I.; Verma, D. K.; Balia, R.; Utama, G. L.; Patel, A. R. Potential of Cheese Whey Bioactive Proteins and Peptides in the Development of Antimicrobial Edible Film Composite: A Review of Recent Trends. Trends Food Sci. Technol. 2020, 103, 57–67. DOI: 10.1016/j.tifs.2020.06.017.
  • Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S. K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation. 2020, 6(4), 106. DOI: 10.3390/fermentation6040106.
  • Utba, F.; Balia, R. L.; Utama, G. L. The Presence of Indigenous Yeasts with Proteolytic Activity Isolated from Homemade-Mozzarella Whey. Sci. Papers Seri. Manag. Eco. Engi. Agri. & rural dev. 2018, 18, 8.
  • Dinika, I.; Nurhadi, B.; Masruchin, N.; Utama, G. L.; Balia, R. L. The Roles of Candida tropicalis Toward Peptide and Amino Acid Changes in Cheese Whey Fermentation. IJTech. 2019, 10(8), 1533. DOI: 10.14716/ijtech.v10i8.3661.
  • Helal, A.; Nasuti, C.; Sola, L.; Sassi, G.; Tagliazucchi, D.; Solieri, L. Impact of Spontaneous Fermentation and Inoculum with Natural Whey Starter on Peptidomic Profile and Biological Activities of Cheese Whey: A Comparative Study. Fermentation. 2023, 9(3), 270. DOI: 10.3390/fermentation9030270.
  • Zheng, X.; Li, K.; Shi, X.; Ni, Y.; Li, B.; Zhuge, B. Potential Characterization of Yeasts Isolated from Kazak Artisanal Cheese to Produce Flavoring Compounds. Microbiol. Open. 2017, 7(1), e00533. DOI: 10.1002/mbo3.533.
  • Martini, S.; Bonazzi, M.; Malorgio, I.; Pizzamiglio, V.; Tagliazucchi, D.; Solieri, L. Characterization of Yeasts Isolated from Parmigiano Reggiano Cheese Natural Whey Starter: From Spoilage Agents to Potential Cell Factories for Whey Valorization. Microorganisms. 2021, 9(11), 2288. DOI: 10.3390/microorganisms9112288.
  • Rapala-Kozik, M.; Bochenska, O.; Zajac, D.; Karkowska-Kuleta, J.; Gogol, M.; Zawrotniak, M.; Kozik, A. Extracellular Proteinases of Candida Species Pathogenic Yeasts. Mol. Oral Microbiol. 2018, 33(2), 113–124. DOI: 10.1111/omi.12206.
  • Togni, G.; Sanglard, D.; Quadroni, M.; Foundling, S. I.; Monod, M. Acid Proteinase Secreted by Candida Tropicalis: Functional Analysis of Preproregion Cleavages in C. Tropicalis and Saccharomyces Cerevisiae. Microbiology. 1996, 142(3), 493–503. DOI: 10.1099/13500872-142-3-493.
  • Portela, M. B.; Souza, I. P. R.; Abreu, C. M.; Bertolini, M.; Holandino, C.; Alviano, C. S.; Santos, A. L. S.; Soares, R. M. A. Effect of Serine-Type Protease of Candida Spp. Isolated from Linear Gingival Erythema of HIV-Positive Children: Critical Factors in the Colonization. J. Oral Pathol. Med. 2010, 39(10), 753–760. Cited: in: PMID: 20618613. DOI: 10.1111/j.1600-0714.2010.00906.x.
  • Zuza-Alves, D. L.; Silva-Rocha, W. P.; Chaves, G. M. 2017. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front. Microbiol. 8. DOI: 10.3389/fmicb.2017.01927.
  • Utama, G. L.; Kurnani, T. B. A.; Sunardi-Balia, R. L. The Isolation and Identification of Stress Tolerance Ethanol-Fermenting Yeasts from Mozzarella Cheese Whey. Int. J. Advan. Sci. Eng. & Info. Tech. 2016, 6(2), 252-257–257. DOI: 10.18517/ijaseit.6.2.752.
  • Turgut Genç, T.; Günay, M. Internal Transcribed Spacer (ITS) Sequence-Based Identification of Yeast Biota on Pomegranate Surface and Determination of Extracellular Enzyme Profile. Nusantara. Biosci. 2020, 12(1), Internet. DOI: 10.13057/nusbiosci/n120111.
  • Mar, W. W.; Rohman, A.; Muwafiqi, N. H.; Laras, G. A.; Agustina, D.; One, A.; Puspaningsih, N. N. T. Short Communication: Preliminary Phylogenetic Analysis of Bacteria Producing Laccase Isolated from Gunung Pancar, Bogor, Indonesia. Biodiversitas 2020, 21. DOI:10.13057/biodiv/d210539.
  • Zhang, H.; Metzger, L. E. Noncasein Nitrogen Analysis of Ultrafiltration and Microfiltration Retentate. J. Dairy Sci. 2011, 94(4), 2118–2125. DOI: 10.3168/jds.2010-3690.
  • Rochín-Medina, J. J.; Ramírez-Medina, H. K.; Rangel-Peraza, J. G.; Pineda-Hidalgo, K. V.; Iribe-Arellano, P. Use of Whey as a Culture Medium for Bacillus Clausii for the Production of Protein Hydrolysates with Antimicrobial and Antioxidant Activity. Food Sci. Technol. Int. 2018, 24(1), 35–42. DOI: 10.1177/1082013217724705.
  • Ojha, N.; Das, N. Direct Submission. Department of Bio-Medical Sciences, School of Bio Sciences and Technology; Vellore Institute of Technology, VIT University: Vellore, Tamil Nadu 632014, India, 2017.
  • Pham, T. T.; Tran, C. L.; Nguyen, V. D. Direct Submission. Institute of Biotechnology and Environment; Nha Trang University, 02: Nguyen Dinh Chieu, Nha Trang, Khanh Hoa 650000, Viet Nam, 2020.
  • Tamang, J. P.; Shangpliang, H. N. J. Direct Submission; MIcrobiology, Sikkim University: Tadong Gangtok, Sikkim 737102, India, 2020.
  • Johnson, L. L. Nucleic Acid in Bacterial Classification. In Bergey’s Manual of Systematic Bacteriology, Krieg, N., Ed.; Williams & Wilkins: Baltomore, 1984; 205.
  • Sandy, Y. A.; Djauhari, S.; Sektiono, A. W. Molecular Identification of Antagonistic Fungi Trichoderma Harzianum Isolated from Agricultural Land in Malang, East Java. J. Hama dan Penyakit Tumbuhan. 2015, 3, 1–8.
  • Claverie, J. M.; Notredame, C. Bioinformatics for Dummies; Wiley Publishing: Indianapolis, 2003.
  • Hidayat, T.; Adi, P. Kajian Filogenetika Molekuler dan Peranannya dalam Menyediakan Informasi Dasar untuk Meningkatkan Kualitas Sumber Genetik Anggrek. Jurnal AgroBiogen. 2008, 4(1), 35–40. DOI: 10.21082/jbio.v4n1.2008.p35-40.
  • Ribeiro, P. L.; Rapini, A.; E Silva, U. C. S.; van den Berg, C. Using Multiple Analytical Methods to Improve Phylogenetic Hypotheses in Minaria (Apocynaceae). Mol. Phylogene. & Evol. 2012, 65(3), 915–925. DOI: 10.1016/j.ympev.2012.08.019.
  • Prasanna, A. N.; Gerber, D.; Kijpornyongpan, T.; Aime, M. C.; Doyle, V. P.; Nagy, L. G. Model Choice, Missing Data and Taxon Sampling Impact Phylogenomic Inference of Deep Basidiomycota Relationships. Syst. Biol. 2020, 69(1), 17–37. Cited: in: PMID: 31062852. DOI: 10.1093/sysbio/syz029.
  • Hillis, D. M.; Bull, J. J. An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analyses. Syst. Bio. 1993, 42(2), 182–192. DOI: 10.1093/sysbio/42.2.182.
  • Lamey, P.; Selemi, M.; Vandamme, A. M. The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysus and Hypothesis Testing; Cambrige University Press: Cambridge, United Kingdom, 2009.
  • Hebert, P.; Cywinska, A.; Ball, S.; De Waard, J. Biological Identifications Through DNA Barcodes. Proc. R Soc. Lond B. 2003, 270(1512), 313–321. DOI: 10.1098/rspb.2002.2218.
  • Kusuma, A. Konektivitas dan keragaman genetika pada karang lunak Sarcophyton trocheliophorum serta implikasinya terhadap kawasan konservasi laut; Institut Pertanian Bogor: Bogor, Indonesia, 2014.
  • Bintsis, &. Yeasts in Different Types of Cheese. AIMS. Microbiol. 2021, 7(4), 447–470. Cited: in: PMID: 35071942. DOI: 10.3934/microbiol.2021027.
  • Dostal, J.; Hamal, P.; Pavlickova, L.; Soucek, M.; Ruml, T.; Pichová, I.; Hruskova-Heidingsfeldova, O. Simple Method for Screening Candida Species Isolates for the Presence of Secreted Proteinases: A Tool for the Prediction of Successful Inhibitory Treatment. J. Clin. Microbiol. 2003, 41(2), 712–716. Cited: in: PMID: 12574271. DOI: 10.1128/JCM.41.2.712-716.2003.
  • Minj, S.; Anand, S. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy. 2020, 1(3), 233–258. DOI: 10.3390/dairy1030016.
  • Didelot, S.; Bordenave-Juchereau, S.; Rosenfeld, E.; Piot, J.-M.; Sannier, F. Peptides Released from Acid Goat Whey by a Yeast-Lactobacillus Association Isolated from Cheese Microflora. J. Dairy Res. 2006, 73, 163–170. Cited: in: PMID: 16476172. DOI: 10.1017/S0022029905001512.
  • Gurina, T. S.; Mohiuddin, S. S. Biochemistry, Protein Catabolism. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. http://www.ncbi.nlm.nih.gov/books/NBK556047/.
  • Butré, C. I.; Buhler, S.; Sforza, S.; Gruppen, H.; Wierenga, P. A. Spontaneous, Non-Enzymatic Breakdown of Peptides During Enzymatic Protein Hydrolysis. Biochim. Biophys. Acta. 2015, 1854(8), 987–994. Cited: in: PMID: 25797674. DOI: 10.1016/j.bbapap.2015.03.004.
  • Chaves-López, C.; Tofalo, R.; Serio, A.; Paparella, A.; Sacchetti, G.; Suzzi, G. Yeasts from Colombian Kumis as Source of Peptides with Angiotensin I Converting Enzyme (ACE) Inhibitory Activity in Milk. Int. J. Food Microbiol. 2012, 159, 39–46. Cited: in: PMID: 22938834. DOI: 10.1016/j.ijfoodmicro.2012.07.028.
  • Walsh, C.; Meade, J.; Mcgill, K.; Fanning, S. The Biodiversity of Thermoduric Bacteria Isolated from Whey. J. Food Saf. 2012, 32(2), 255–261. DOI: 10.1111/j.1745-4565.2012.00375.x.
  • Huang, Z.; Huang, L.; Xing, G.; Xu, X.; Tu, C.; Dong, M. Effect of Co-Fermentation with Lactic Acid Bacteria and K. Marxianus on Physicochemical and Sensory Properties of Goat Milk. Foods. 2020, 9(3), 299. Cited: in: PMID: 32155720. DOI: 10.3390/foods9030299.
  • Tshikantwa, T. S.; Ullah, M. W.; He, F.; Yang, G. Current Trends and Potential Applications of Microbial Interactions for Human Welfare. Front. Microbiol. 2018, 9, 1156. Cited: in: PMID: 29910788. DOI: 10.3389/fmicb.2018.01156.
  • Kandasamy, S.; Kavitake, D.; Shetty, P. H. Lactic Acid Bacteria and Yeasts as Starter Cultures for Fermented Foods and Their Role in Commercialization of Fermented Foods. In Innovations in Technologies for Fermented Food and Beverage Industries [Internet], Panda, S. Shetty, P. Eds. Cham: Springer International Publishing, 2018; pp. 25–52. Available from h t tp://link.springer.com/10.1007/978-3-319-74820-7_2
  • Mirzaei, M.; Shavandi, A.; Mirdamadi, S.; Soleymanzadeh, N.; Motahari, P.; Mirdamadi, N.; Moser, M.; Subra, G.; Alimoradi, H.; Goriely, S. Bioactive Peptides from Yeast: A Comparative Review on Production Methods, Bioactivity, Structure-Function Relationship, and Stability. Trends Food Sci. Technol. 2021, 118, 297–315. DOI: 10.1016/j.tifs.2021.10.008.
  • Ponomarova, O.; Gabrielli, N.; Sévin, D. C.; Mülleder, M.; Zirngibl, K.; Bulyha, K.; Andrejev, S.; Kafkia, E.; Typas, A.; Sauer, U., et al. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria Through Nitrogen Overflow. Cell. Sys. 2017, 5(4), 345–357.e6.
  • Gobbetti, M. The Sourdough Microflora: Interactions of Lactic Acid Bacteria and Yeasts. Trends Food Sci. Technol. 1998, 9, 267–274. DOI: 10.1016/S0924-2244(98)00053-3.
  • Collar, C.; Mascarós, A. F.; Barber, C. B. D. Amino Acid Metabolism by Yeasts and Lactic Acid Bacteria During Bread Dough Fermentation. J. Food Sci. 1992, 57(6), 1423–1427. DOI: 10.1111/j.1365-2621.1992.tb06874.x.
  • Lee, K.; Kim, H. J.; Park, S. K. Amino Acids Analysis During Lactic Acid Fermentation by Single Strain Cultures of Lactobacilli and Mixed Culture Starter Made from Them. Afr. J. Biotechnol. 2014, 13(28), 2867–2873. Internet. DOI: 10.5897/AJB2013.13422.
  • Katragkou, A.; Alexander, E. L.; Eoh, H.; Raheem, S. K.; Roilides, E.; Walsh, T. J. Effects of fluconazole on the metabolomic profile of Candida albicans. J. Antimicrob. Chemother. 2016, 71(3), 635–640. DOI: 10.1093/jac/dkv381.
  • Muthamil, S.; Prasath, K. G.; Priya, A.; Precilla, P.; Pandian, S. K. Global Proteomic Analysis Deciphers the Mechanism of Action of Plant Derived Oleic Acid Against Candida albicans Virulence and Biofilm Formation. Sci. Rep. 2020, 10(1), 5113. DOI: 10.1038/s41598-020-61918-y.
  • Han, T.-L.; Cannon, R. D.; Villas-Bôas, S. G. The Metabolic Basis of Candida albicans Morphogenesis and Quorum Sensing. Fungal Genet. Biol. 2011, 48(8), 747–763. Cited: in: PMID: 21513811. DOI: 10.1016/j.fgb.2011.04.002.
  • Huet, C.; Menendez, J.; Gancedo, C.; François, J. M. Regulation of Pyc1 Encoding Pyruvate Carboxylase Isozyme I by Nitrogen Sources in Saccharomyces cerevisiae. Eur. J. Biochem. 2000, 267(23), 6817–6823. Cited: in: PMID: 11082192. DOI: 10.1046/j.1432-1033.2000.01779.x.
  • Liu, S.-Q.; Holland, R.; Crow, V. L. The Potential of Dairy Lactic Acid Bacteria to Metabolise Amino Acids via Non-Transaminating Reactions and Endogenous Transamination. Int. J. Food Microbiol. 2003, 86(3), 257–269. DOI: 10.1016/s0168-1605(03)00040-0.
  • Guillamón, J. M.; van Riel, NA; Giuseppin, M. L.; Verrips, C. T. The Glutamate Synthase (GOGAT) of Saccharomyces cerevisiae Plays an Important Role in Central Nitrogen Metabolism. FEMS Yeast. Res. 2001, 1(3), 169–175. DOI: 10.1016/S1567-1356(01)00034-4.
  • Walker, M. C.; van der Donk, W. A. The Many Roles of Glutamate in Metabolism. J. Ind. Microbiol. Biotechnol. 2016, 43(2–3), 419–430. Cited: in: PMID: 26323613. DOI: 10.1007/s10295-015-1665-y.
  • Miflin, B. J.; Cave, P. R. The Control of Leucine, Isoleucine, and Valine Biosynthesis in a Range of Higher Plants. J. Exp. Bot. 1972, 23(2), 511–516. DOI: 10.1093/jxb/23.2.511.
  • Neinast, M.; Murashige, D.; Arany, Z. Branched Chain Amino Acids. Annu. Rev. Physiol. 2019, 81(1), 139–164. Cited: in: PMID: 30485760. DOI: 10.1146/annurev-physiol-020518-114455.
  • Casey, G. P. Yeast Selection in Brewing. Yeast Strain Selection; CRC Press: Boca Raton, Florida, United States, 2020.
  • Holmberg, S.; Petersen, J. G. Regulation of Isoleucine-Valine Biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 1988, 13(3), 207–217. Cited: in: PMID: 3289762. DOI: 10.1007/BF00387766.
  • Ramos, C.; Calderón, I. L. Biochemical Evidence That the Saccharomyces cerevisiae THR4 Gene Encodes Threonine Synthetase. FEBS. Lett. 1994, 351, 357–359. Cited: in: PMID: 8082795. DOI: 10.1016/0014-5793(94)00874-4.
  • Large, P. J.; Robertson, A. The Route of Lysine Breakdown in Candida tropicalis. FEMS microbiol. lett. 1991, 82(2), 209–213. DOI: 10.1111/j.1574-6968.1991.tb04866.x.
  • Schlitzer, R. L.; Ahearn, D. G. Characterization of Atypical Candida tropicalis and Other Uncommon Clinical Yeast Isolates. J. Clin. Microbiol. 1982, 15(3), 511–516. Cited: in: PMID: 7042748. DOI: 10.1128/jcm.15.3.511-516.1982.
  • Hothersall, J. S.; Ahmed, A. Metabolic Fate of the Increased Yeast Amino Acid Uptake Subsequent to Catabolite Derepression. J. Amino Acids. 2013, 2013, 1–7. Cited: in: PMID: 23431419. DOI: 10.1155/2013/461901.
  • Cerrillo, I.; Fernández-Pachón, M. S.; Collado-González, J.; Escudero-López, B.; Berná, G.; Herrero-Martín, G.; Martín, F.; Ferreres, F.; Gil-Izquierdo, A. Effect of Fermentation and Subsequent Pasteurization Processes on Amino Acids Composition of Orange Juice. Plant Foods Hum. Nutr. 2015, 70(2), 153–159. DOI: 10.1007/s11130-015-0472-y.
  • Brunke, S.; Seider, K.; Richter, M. E.; Bremer-Streck, S.; Ramachandra, S.; Kiehntopf, M.; Brock, M.; Hube, B. Histidine Degradation via an Aminotransferase Increases the Nutritional Flexibility of Candida Glabrata. Eukaryot. Cell. 2014, 13(6), 758–765. Cited: in: PMID: 24728193. DOI: 10.1128/EC.00072-14.
  • Kasper, L.; Seider, K.; Gerwien, F.; Allert, S.; Brunke, S.; Schwarzmüller, T.; Ames, L.; Zubiria-Barrera, C.; Mansour, M. K.; Becken, U., et al. Identification of Candida Glabrata Genes Involved in pH Modulation and Modification of the Phagosomal Environment in Macrophages. PloS One. 2014, 9(5), e96015.
  • Han, T.-L.; Cannon, R. D.; Gallo, S. M.; Villas-Bôas, S. G. A Metabolomic Study of the Effect of Candida albicans Glutamate Dehydrogenase Deletion on Growth and Morphogenesis. Npj Biofilms Microbiomes. 2019, 5(1), 1–14. DOI: 10.1038/s41522-019-0086-5.
  • Brunke, S.; Seider, K.; Almeida, R. S.; Heyken, A.; Fleck, C. B.; Brock, M.; Barz, D.; Rupp, S.; Hube, B. Candida Glabrata Tryptophan-Based Pigment Production via the Ehrlich Pathway. Mol. Microbiol. 2010, 76(1), 25–47. DOI: 10.1111/j.1365-2958.2010.07052.x.
  • Broach, J. R. Nutritional Control of Growth and Development in Yeast. Genetics. 2012, 192(1), 73–105. Cited: in: PMID: 22964838. DOI: 10.1534/genetics.111.135731.
  • Crépin, L.; Nidelet, T.; Sanchez, I.; Dequin, S.; Camarasa, C. Sequential Use of Nitrogen Compounds by Saccharomyces cerevisiae During Wine Fermentation: A Model Based on Kinetic and Regulation Characteristics of Nitrogen Permeases. Appl. Environ. Microbiol. 2012, 78, 8102–8111. DOI: 10.1128/AEM.02294-12.
  • Magasanik, B.; Kaiser, C. A. Nitrogen Regulation in Saccharomyces cerevisiae. Gene. 2002, 290(1–2), 1–18. Cited: in: PMID: 12062797. DOI: 10.1016/s0378-1119(02)00558-9.
  • Gobert, A.; Tourdot-Maréchal, R.; Morge, C.; Sparrow, C.; Liu, Y.; Quintanilla-Casas, B.; Vichi, S.; Alexandre, H. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile. Front. Microbiol. 2017, 8, 2175. Cited: in: PMID: 29163451. DOI: 10.3389/fmicb.2017.02175.