1,307
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent advancements in cross-linked starches for food applications- a review

, , , &
Pages 411-430 | Received 24 Nov 2023, Accepted 04 Feb 2024, Published online: 06 Mar 2024

References

  • Min, Y.; Yi, J.; Dai, R.; Liu, W.; Chen, H. A Novel Efficient Wet Process for Preparing Cross-Linked Starch: Impact of Urea on Cross-Linking Performance. Carbohydr. Polym. 2023, 320, 121247. DOI: 10.1016/j.carbpol.2023.121247.
  • Bangar, S. P.; Whiteside, W. S.; Dunno, K. D.; Cavender, G. A.; Dawson, P.; Love, R. Starch-Based Bio-Nanocomposites Films Reinforced with Cellulosic Nanocrystals Extracted from Kudzu (Pueraria Montana) Vine. Int. J. Biol. Macromol. 2022, 203, 350–360. DOI: 10.1016/j.ijbiomac.2022.01.133.
  • Bhatt, P.; Kumar, V.; Goel, R.; Sharma, S. K.; Kaushik, S.; Sharma, S.; Tesema, M. Structural Modifications and Strategies for Native Starch for Applications in Advanced Drug Delivery. Biomed Res. Int. 2022, 2022, 1–14. DOI: 10.1155/2022/2188940.
  • Gebresas, G. A.; Szabó, T.; Marossy, K. Effects of Acidity, Number of Hydroxyl Group, and Carbon Chain Length of Carboxylic Acids on Starch Cross-Linking. Curr. Res. Green Sustainable Chem. 2023, 6, 100354. DOI: 10.1016/j.crgsc.2022.100354.
  • Olayemi, B.; Isimi, C. Y.; Ekere, K.; Isaac, A. J.; Okoh, J. E.; Emeje, M. Green Preparation of Citric Acid Crosslinked Starch for Improvement of Physicochemical Properties of Cyperus Starch. Turk. J. Pharm. Sci. 2021, 18(1), 34. DOI: 10.4274/tjps.galenos.2019.65624.
  • Ding, L.; Huang, Q.; Xiang, W.; Fu, X.; Zhang, B.; Wu, J. Y. Chemical Cross-Linking Reduces in vitro Starch Digestibility of Cooked Potato Parenchyma Cells. Food. Hydrocol. 2022, 124, 107297. DOI: 10.1016/j.foodhyd.2021.107297.
  • Klostermann, C. E.; Buwalda, P. L.; Leemhuis, H.; de Vos, P.; Schols, H. A.; Bitter, J. H. Digestibility of Resistant Starch Type 3 is Affected by Crystal Type, Molecular Weight and Molecular Weight Distribution. Carbohydr. Polym. 2021, 265, 118069. DOI: 10.1016/j.carbpol.2021.118069.
  • Malik, M. K.; Kumar, V.; Sharma, P. P.; Singh, J.; Fuloria, S.; Subrimanyan, V.; Fuloria, N. K.; Kumar, P. Improvement in Digestion Resistibility of Mandua Starch (Eleusine Coracana) After Cross-Linking with Epichlorohydrin. ACS. Omega. 2022, 7(31), 27334–27346. DOI: 10.1021/acsomega.2c02327.
  • Yao, S.; Wang, B. J.; Weng, Y. M. Preparation and Characterization of Mung Bean Starch Edible Films Using Citric Acid as Cross-Linking Agent. Food Pack. Shelf Life. 2022, 32, 100845. DOI: 10.1016/j.fpsl.2022.100845.
  • Gao, F.; Li, D.; Bi, C. H.; Mao, Z. H.; Adhikari, B. Preparation and Characterization of Starch Crosslinked with Sodium Trimetaphosphate and Hydrolyzed by Enzymes. Carbohydr. Polym. 2014, 103, 310–318. DOI: 10.1016/j.carbpol.2013.12.028.
  • Delley, R. J.; O’Donoghue, A. C.; Hodgson, D. R. Hydrolysis Studies of Phosphodichloridate and Thiophosphodichloridate Ions. J. Org. Chem. 2012, 77(13), 5829–5831. DOI: 10.1021/jo300808m.
  • Shah, N.; Mewada, R. K.; Mehta, T. Crosslinking of Starch and Its Effect on Viscosity Behaviour. Rev. Chem. Eng. 2016, 32(2), 265–270. DOI: 10.1515/revce-2015-0047.
  • Desam, G. P.; Li, J.; Chen, G.; Campanella, O.; Narsimhan, G. Prediction of Swelling Behavior of Crosslinked Maize Starch Suspensions. Carbohydr. Polym. 2018, 199, 331–340. DOI: 10.1016/j.carbpol.2018.07.020.
  • Polnaya, F. J.; Marseno, D. W.; Cahyanto, M. N. Effects of Phosphorylation and Cross-Linking on the Pasting Properties and Molecular Structure of Sago Starch. Int. Food Res. J. 2013, 20(4), 1609–1615.
  • Zhang, B.; Tao, H.; Wei, B.; Jin, Z.; Xu, X.; Tian, Y.; Khodarahmi, R. Characterization of Different Substituted Carboxymethyl Starch Microgels and Their Interactions with Lysozyme. PloS One. 2014, 9(12), e114634. DOI: 10.1371/journal.pone.0114634.
  • Gerezgiher, A. G.; Szabó, T. Crosslinking of Starch Using Citric Acid. J. Phys.: Conf. Ser. 2022, 2315(1), 012036. IOP Publishing. DOI: 10.1088/1742-6596/2315/1/012036.
  • Uliniuc, A.; Hamaide, T.; Popa, M.; Băcăiță, S. Modified Starch-Based Hydrogels Cross-Linked with Citric Acid and Their Use as Drug Delivery Systems for Levofloxacin. Soft. Mater. 2013, 11(4), 483–493. DOI: 10.1080/1539445X.2012.710698.
  • Ačkar, Đ.; Babić, J.; Jozinović, A.; Miličević, B.; Jokić, S.; Miličević, R.; Rajič, M.; Šubarić, D. Starch Modification by Organic Acids and Their Derivatives: A Review. Molecules. 2015, 20(10), 19554–19570. DOI: 10.3390/molecules201019554.
  • Sharma, V.; Kaur, M.; Sandhu, K. S.; Kaur, S.; Nehra, M. Barnyard Millet Starch Cross-Linked at Varying Levels by Sodium Trimetaphosphate (STMP): Film Forming, Physico-Chemical, Pasting and Thermal Properties. Carbohydr. Polym. Technol. Appl. 2021, 2, 100161. DOI: 10.1016/j.carpta.2021.100161.
  • Xiaofan, L.; Chen, Y.; Zhou, W. Effect of Cross-Linking with Sodium Trimetaphosphate on Structural and Physicochemical Properties of Tigernut Starch. Food Sci. Technol. 2022, 42, 1–5. DOI: 10.1590/fst.76422.
  • Iweajunwa, S. I.; Achugasim, O.; Ogali, R. E. Effects of Acetylation, Carboxymethylation and Crosslinking on Some Physicochemical Properties of Starch from Tubers of Icacina Senegalensis and Cyrtosperma Senegalense. Scientia. Africana. 2023, 22(1), 75–84. DOI: 10.4314/sa.v22i1.8.
  • Sharma, V.; Kaur, M.; Sandhu, K. S.; Godara, S. K. Effect of Cross-Linking on Physico-Chemical, Thermal, Pasting, in vitro Digestibility and Film Forming Properties of Faba Bean (Vicia Faba L.) Starch. Int. J. Biol. Macromol. 2020, 159, 243–249. DOI: 10.1016/j.ijbiomac.2020.05.014.
  • Chandak, A.; Dhull, S. B.; Punia Bangar, S.; Rusu, A. V. Effects of Cross-Linking on Physicochemical and Film Properties of Lotus (Nelumbo Nucifera G.) Seed Starch. Foods. 2022, 11(19), 3069. DOI: 10.3390/foods11193069.
  • Ge, X.; Guo, Y.; Zhao, J.; Zhao, J.; Shen, H.; Yan, W. Dielectric Barrier Discharge Cold Plasma Combined with Cross-Linking: An Innovative Way to Modify the Multi-Scale Structure and Physicochemical Properties of Corn Starch. Int. J. Biol. Macromol. 2022, 215, 465–476. DOI: 10.1016/j.ijbiomac.2022.06.060.
  • Sriprablom, J.; Tatikunakorn, P.; Lerdpriyanun, P.; Suphantharika, M.; Wongsagonsup, R. Effect of Single and Dual Modifications with Cross-Linking and Octenylsuccinylation on Physicochemical, in-Vitro Digestibility, and Emulsifying Properties of Cassava Starch. Food Res. Int. 2023, 163, 112304. DOI: 10.1016/j.foodres.2022.112304.
  • Amorim, T. S.; Andrade, I. H. P.; Otoni, C. G.; Camilloto, G. P.; Cruz, R. S. Tailoring Breadfruit (Artocarpus Altilis) Starch: Cross‐Linking Starch from This Non‐Conventional Source Towards Improved Technologically Relevant Properties and Enabled Food Applications. Starch‐Stärke. 2021, 73(11–12), 2100058. DOI: 10.1002/star.202100058.
  • Navaf, M.; Sunooj, K. V. Impact of Different Cross-Linking Agents on Functional, Rheological, and Structural Properties of Talipot Palm Starch: A New Source of Stem Starch. Bio. & Life Sci. Forum. November 2022, 20(1): 16.
  • Li, M. N.; Xie, Y.; Chen, H. Q.; Zhang, B. Effects of Heat-Moisture Treatment After Citric Acid Esterification on Structural Properties and Digestibility of Wheat Starch, A-And B-Type Starch Granules. Food. Chem. 2019, 272, 523–529. DOI: 10.1016/j.foodchem.2018.08.079.
  • Remya, R.; Jyothi, A. N.; Sreekumar, J. Effect of Chemical Modification with Citric Acid on the Physicochemical Properties and Resistant Starch Formation in Different Starches. Carbohydr. Polym. 2018, 202, 29–38. DOI: 10.1016/j.carbpol.2018.08.128.
  • Sudheesh, C.; Sunooj, K. V.; Alom, M.; Kumar, S.; Sajeevkumar, V. A.; George, J. Effect of Dual Modification with Annealing, Heat Moisture Treatment and Cross-Linking on the Physico-Chemical, Rheological and in vitro Digestibility of Underutilised Kithul (Caryota Urens) Starch. J. Food Meas. Charact. 2020, 14(3), 1557–1567. DOI: 10.1007/s11694-020-00404-5.
  • Aaliya, B.; Sunooj, K. V.; Rajkumar, C. B. S.; Navaf, M.; Akhila, P. P.; Sudheesh, C.; Lackner, M. Effect of Thermal Pretreatments on Phosphorylation of Corypha Umbraculifera L. Stem Pith Starch: A Comparative Study Using Dry-Heat, Heat-Moisture, and Autoclave Treatments. Polymers. 2021, 13(21), 3855. DOI: 10.3390/polym13213855.
  • Surendra Babu, A.; Parimalavalli, R.; Jagan Mohan, R. Effect of Modified Starch from Sweet Potato as a Fat Replacer on the Quality of Reduced Fat Ice Creams. J. Food Meas. Charact. 2018, 12(4), 2426–2434. DOI: 10.1007/s11694-018-9859-4.
  • Kou, T.; Gao, Q. A Study on the Thermal Stability of Amylose-Amylopectin and Amylopectin-Amylopectin in Cross-Linked Starches Through Iodine Binding Capacity. Food. Hydrocoll. 2019, 88, 86–91. DOI: 10.1016/j.foodhyd.2018.09.028.
  • Wang, Y.; He, M.; Wu, Y.; Liu, Y.; Ouyang, J. Effect of Crosslinking Agents on the Physicochemical and Digestive Properties of Corn Starch Aerogel. Starch‐Stärke. 2021, 73(3–4), 2000161. DOI: 10.1002/star.202000161.
  • Kapelko, M.; Zięba, T.; Michalski, A.; Gryszkin, A. Effect of Cross-Linking Degree on Selected Properties of Retrograded Starch Adipate. Food. Chem. 2015, 167, 124–130. DOI: 10.1016/j.foodchem.2014.06.096.
  • Sandhu, K. S.; Siroha, A. K.; Punia, S.; Sangwan, L.; Nehra, M.; Purewal, S. S. Effect of Degree of Cross Linking on Physicochemical, Rheological and Morphological Properties of Sorghum Starch. Carbohydr. Polym. Technol. Appl. 2021, 2, 100073. DOI: 10.1016/j.carpta.2021.100073.
  • Jia, S.; Yu, B.; Zhao, H.; Tao, H.; Liu, P.; Cui, B. Physicochemical Properties and in vitro Digestibility of Dual‐Modified Starch by Cross‐Linking and Annealing. Starch‐Stärke. 2022, 74(1–2), 2100102. DOI: 10.1002/star.202100102.
  • Tesfay, D.; Abrha, S.; Yilma, Z.; Woldu, G.; Molla, F. Preparation, Optimization, and Evaluation of Epichlorohydrin Cross-Linked Enset (Ensete Ventricosum (Welw.) Cheeseman) Starch as Drug Release Sustaining Excipient in Microsphere Formulation. Biomed Res. Int. 2020, 2020, 1–19. BioMed research international. DOI: 10.1155/2020/2147971.
  • Marta, H.; Hasya, H. N. L.; Lestari, Z. I.; Cahyana, Y.; Arifin, H. R.; Nurhasanah, S. Study of Changes in Crystallinity and Functional Properties of Modified Sago Starch (Metroxylon Sp.) Using Physical and Chemical Treatment. Polymers. 2022, 14(22), 4845. DOI: 10.3390/polym14224845.
  • Olawoye, B.; Fagbohun, O. F.; Popoola, O. O.; Gbadamosi, S. O.; Akanbi, C. T. Understanding How Different Modification Processes Affect the Physiochemical, Functional, Thermal, Morphological Structures and Digestibility of Cardaba Banana Starch. Int. J. Biol. Macromol. 2022, 201, 158–172. DOI: 10.1016/j.ijbiomac.2021.12.134.
  • Radi, M.; Abedi, E.; Najafi, A.; Amiri, S. The Effect of Freezing-Assisted Cross-Linking on Structural and Rheological Properties of Potato Starch. Int. J. Biol. Macromol. 2022, 222, 2775–2784. DOI: 10.1016/j.ijbiomac.2022.10.057.
  • Kou, T.; Song, J.; Liu, M.; Fang, G. Effect of Amylose and Crystallinity Pattern on the Gelatinization Behavior of Cross-Linked Starches. Polymers. 2022, 14(14), 2870. DOI: 10.3390/polym14142870.
  • Sharma, V.; Kaur, M.; Sandhu, K. S.; Nain, V.; Janghu, S. Physicochemical and Rheological Properties of Cross‐Linked Litchi Kernel Starch and Its Application in Development of Bio‐Films. Starch‐Stärke. 2021, 73(7–8), 2100049. DOI: 10.1002/star.202100049.
  • Aaliya, B.; Sunooj, K. V.; John, N. E.; Navaf, M.; Akhila, P. P.; Sudheesh, C.; Sabu, S.; Sasidharan, A.; Mir, S. A.; George, J. Impact of Microwave Irradiation on Chemically Modified Talipot Starches: A Characterization Study on Heterogeneous Dual Modifications. Int. J. Biol. Macromol. 2022, 209, 1943–1955. DOI: 10.1016/j.ijbiomac.2022.04.172.
  • Dong, H.; Vasanthan, T. Effect of Phosphorylation Techniques on Structural, Thermal, and Pasting Properties of Pulse Starches in Comparison with Corn Starch. Food. Hydrocolloids. 2020b, 109, 106078. DOI: 10.1016/j.foodhyd.2020.106078.
  • Siroha, A. K.; Sandhu, K. S. Physicochemical, Rheological, Morphological, and in vitro Digestibility Properties of Cross-Linked Starch from Pearl Millet Cultivars. Int. J. Food Prop. 2018, 21(1), 1371–1385. DOI: 10.1080/10942912.2018.1489841.
  • Chakraborty, I.; N, P.; Mal, S. S.; Paul, U. C.; Rahman, M. H.; Mazumder, N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A Review. Food Bioprocess. Technol. 2022, 15(6), 1195–1223. DOI: 10.1007/s11947-022-02761-z.
  • Gonenc, I.; Us, F. Effect of Glutaraldehyde Crosslinking on Degree of Substitution, Thermal, Structural, and Physicochemical Properties of Corn Starch. Starch‐Stärke. 2019, 71(3–4), 1800046. DOI: 10.1002/star.201800046.
  • Falsafi, S. R.; Maghsoudlou, Y.; Aalami, M.; Jafari, S. M.; Raeisi, M. Physicochemical and Morphological Properties of Resistant Starch Type 4 Prepared Under Ultrasound and Conventional Conditions and Their in-Vitro and in-Vivo Digestibilities. Ultrason. Sonochem. 2019, 53, 110–119. DOI: 10.1016/j.ultsonch.2018.12.039.
  • Dong, H.; Vasanthan, T. Amylase Resistance of Corn, Faba Bean, and Field Pea Starches as Influenced by Three Different Phosphorylation (Cross-Linking) Techniques. Food. Hydrocoll. 2020a, 101, 105506. DOI: 10.1016/j.foodhyd.2019.105506.
  • Park, E. Y.; Lim, S. T. Characterization of Waxy Starches Phosphorylated Using Phytic Acid. Carbohydr. Polym. 2019, 225, 115225. DOI: 10.1016/j.carbpol.2019.115225.
  • Mehfooz, T.; Ali, T. M.; Hasnain, A. Effect of Cross-Linking on Characteristics of Succinylated and Oxidized Barley Starch. J. Food Meas. Charact. 2019, 13(2), 1058–1069. DOI: 10.1007/s11694-018-00021-3.
  • Wang, J.; Zhang, D.; Xiao, J.; Wu, X. Effects of Enzymatic Modification and Cross-Linking with Sodium Phytate on the Structure and Physicochemical Properties of Cyperus esculentus Starch. Foods. 2022, 11(17), 2583. DOI: 10.3390/foods11172583.
  • Zhou, D.; Li, D.; Liu, M.; Zhong, X.; Wei, H.; Wang, Z.; Cui, D. Experimental Parameters Affecting Cross-Linking Density and Free-Thaw Stability of Cross-Linked Porous Starch. ES Food & Agroforestry. 2021, 5, 20–28.
  • Korkut, A.; Kahraman, K. Production of Cross-Linked Resistant Starch from Tapioca Starch and Effect of Reaction Conditions on the Functional Properties, Morphology, X‑Ray Pattern, FT-IR Spectra and Digestibility. J. Food Meas. Charact. 2021, 15(2), 1693–1702. DOI: 10.1007/s11694-020-00764-y.
  • Mehfooz, T.; Ali, T. M.; Shaikh, M.; Hasnain, A. Characterization of Hydroxypropylated-Distarch Phosphate Barley Starch and Its Impact on Rheological and Sensory Properties of Soup. Int. J. Biol. Macromol. 2020, 144, 410–418. DOI: 10.1016/j.ijbiomac.2019.12.142.
  • Luo, Y.; Cheng, H.; Niu, L.; Xiao, J. Improvement in Freeze‐Thaw Stability of Rice Starch by Soybean Protein Hydrolysates‐Xanthan Gum Blends and Its Mechanism. Starch‐Stärke. 2022, 74(1–2), 2100193. DOI: 10.1002/star.202100193.
  • Nakkala, K.; Godiyal, S.; Ettaboina, S. K.; Laddha, K. S. Chemical Modifications of Turmeric Starch by Oxidation, Phosphorylation, and Succinylation. Starch Stärke. 2022, 74(9–10), 74(9–10), 2200053. DOI: 10.1002/star.202200053.
  • Sondari, D.; Restu, W. K.; Septevani, A. A.; Suryaningrum, R.; Burhani, D.; Widyaningrum, B. A.; Putri, R. Effect of Catalyst and Cross‐Linker Concentrations on the Functional and Chemical Properties of Sago Starch. Starch‐Stärke. 2022, 74(5–6), 2000266. DOI: 10.1002/star.202000266.
  • Bagheri, F.; Radi, M.; Amiri, S. Physicochemical Properties of Low and High Amylose Cross-Linked Rice Starches. Nutr. Food Sci. Res. 2018, 5(4), 31–41. DOI: 10.29252/nfsr.5.4.31.
  • Hu, N.; Li, L.; Tang, E.; Liu, X. Structural, Physicochemical, Textural, and Thermal Properties of Phosphorylated Chestnut Starches with Different Degrees of Substitution. J. Food Process. Preserv. 2020, 44(6), e14457. DOI: 10.1111/jfpp.14457.
  • Oh, S. M.; Kim, H. Y.; Bae, J. E.; Ye, S. J.; Kim, B. Y.; Choi, H. D.; Baik, M. Y. Physicochemical and Retrogradation Properties of Modified Chestnut Starches. Food Sci. Biotechnol. 2019, 28(6), 1723–1731. DOI: 10.1007/s10068-019-00622-8.
  • Egharevba, H. O. Chemical Properties of Starch and Its Application in the Food Industry. Chem. Prop. Starch. 2019, 9.
  • Hadnađev, M.; Dapčević-Hadnađev, T.; Dokić, L. Functionality of Starch Derivatives in Bakery and Confectionery Products. In Biopolymers for Food Design; Alexandru Grumezescu A., Alina-Maria Holban, A., Eds.; Academic Press, 2018; pp 279–311.
  • Akram, N.; Pasha, I.; Huma, N.; Asghar, M. Effect of Modified Cereal Starches on Dough and Bread Quality. Pak. J. Agric. Sci. 2017, 54(1), 145–151. DOI: 10.21162/PAKJAS/17.5741.
  • Shukri, F. S. A.; Refai, S. A.; Shukri, R.; Muhammad, K.; Mustapha, N. A.; Ibadullah, W. Z. W.; Ramli, N. S. Dough Rheology and Physicochemical Properties of Steamed Buns Fortified with Cross-Linked Rice Starch. Bioact Carbohydr. Dietary Fibre. 2017, 12, 1–6. DOI: 10.1016/j.bcdf.2017.10.002.
  • Roman, L.; Reguilon, M. P.; Martinez, M. M.; Gomez, M. The Effects of Starch Cross-Linking, Stabilization and Pre-Gelatinization at Reducing Gluten-Free Bread Staling. LWT. 2020, 132, 109908. DOI: 10.1016/j.lwt.2020.109908.
  • Azaripour, A.; Abbasi, H. Effect of Type and Amount of Modified Corn Starches on Qualitative Properties of Low-Protein Biscuits for Phenylketonuria. Food Science & Nutrition. 2020, 8(1), 281–290. DOI: 10.1002/fsn3.1304.
  • Subroto, E.; Indiarto, R.; Djali, M.; Rosyida, H. D. Production and Application of Crosslinking-Modified Starch as Fat Replacer: A Review. Int. J. Eng. Trends Technol. 2020, 68(12), 26–30. DOI: 10.14445/22315381/IJETT-V68I12P205.
  • Rodriguez-Sandoval, E.; Prasca-Sierra, I.; Hernandez, V. Effect of Modified Cassava Starch as a Fat Replacer on the Texture and Quality Characteristics of Muffins. J. Food Meas. Charact. 2017, 11(4), 1630–1639. DOI: 10.1007/s11694-017-9543-0.
  • Fasuan, T. O.; Gbadamosi, S. O.; Akanbi, C. T. Modification of Amaranth (Amaranthus Viridis) Starch, Identification of Functional Groups, and Its Potentials as Fat Replacer. J. Food Biochem. 2018, 42(5), e12537. DOI: 10.1111/jfbc.12537.
  • Altemimi, A. B. Extraction and Optimization of Potato Starch and Its Application as a Stabilizer in Yogurt Manufacturing. Foods. 2018, 7(2), 14. DOI: 10.3390/foods7020014.
  • Saleh, A.; Mohamed, A. A.; Alamri, M. S.; Hussain, S.; Qasem, A. A.; Ibraheem, M. A. Effect of Different Starches on the Rheological, Sensory and Storage Attributes of Non-Fat Set Yogurt. Foods. 2020, 9(1), 61. DOI: 10.3390/foods9010061.
  • Pang, Z.; Xu, R.; Luo, T.; Che, X.; Bansal, N.; Liu, X. Physiochemical Properties of Modified Starch Under Yogurt Manufacturing Conditions and Its Relation to the Properties of Yogurt. J. Food Eng. 2019, 245, 11–17. DOI: 10.1016/j.jfoodeng.2018.10.003.
  • Cui, B.; Lu, Y. M.; Tan, C. P.; Wang, G. Q.; Li, G. H. Effect of Cross-Linked Acetylated Starch Content on the Structure and Stability of Set Yoghurt. Food Hydrocolloids. 2014, 35, 576–582. DOI: 10.1016/j.foodhyd.2013.07.018.
  • Mahmood, K.; Kamilah, H.; Shang, P. L.; Sulaiman, S.; Ariffin, F.; Alias, A. K. A Review: Interaction of Starch/non-Starch Hydrocolloid Blending and the Recent Food Applications. Food Biosci. 2017, 19, 110–120. DOI: 10.1016/j.fbio.2017.05.006.
  • Himashree, P.; Sengar, A. S.; Sunil, C. K. Food Thickening Agents: Sources, Chemistry, Properties and Applications-A Review. Int. J. Gastronomy Food Sci. 2022, 27, 100468. DOI: 10.1016/j.ijgfs.2022.100468.
  • Cai, X.; Du, X.; Zhu, G.; Cai, Z.; Cao, C. The Use of Potato Starch/Xanthan Gum Combinations as a Thickening Agent in the Formulation of Tomato Ketchup. CyTA-J. Food. 2020, 18(1), 401–408. DOI: 10.1080/19476337.2020.1760943.
  • Chen, Y. F.; Kaur, L.; Singh, J. Chemical Modification of Starch. In Starch in Food; Sjoo, M., Nilsson, L., Eds.; Woodhead Publishing, 2018; pp 283–321.
  • Wongsagonsup, R.; Pujchakarn, T.; Jitrakbumrung, S.; Chaiwat, W.; Fuongfuchat, A.; Varavinit, S.; Dangtip, S.; Suphantharika, M. Effect of Cross-Linking on Physicochemical Properties of Tapioca Starch and Its Application in Soup Product. Carbohydr. Polym. 2014, 101, 656–665. DOI: 10.1016/j.carbpol.2013.09.100.
  • Kaur, R.; Sharma, M. Cereal Polysaccharides as Sources of Functional Ingredient for Reformulation of Meat Products: A Review. J. Funct. Foods. 2019, 62, 103527. DOI: 10.1016/j.jff.2019.103527.
  • Pietrasik, Z.; Soladoye, O. P. Use of Native Pea Starches as an Alternative to Modified Corn Starch in Low-Fat Bologna. Meat Sci. 2021, 171, 108283. DOI: 10.1016/j.meatsci.2020.108283.
  • Wu, M.; Wang, J.; Hu, J.; Li, Z.; Liu, R.; Liu, Y.; Cao, Y.; Ge, Q.; Yu, H. Effect of Typical Starch on the Rheological Properties and NMR Characterization of Myofibrillar Protein Gel. J. Sci. Food Agric. 2020, 100(1), 258–267. DOI: 10.1002/jsfa.10033.
  • Lee, C. H.; Chin, K. B. Changes in Physicochemical Properties of Pork Myofibrillar Protein Combined with Corn Starch and Application to Low‐Fat Pork Patties. International Journal Of Food Science & Technology. 2020, 55(1), 157–164. DOI: 10.1111/ijfs.14272.
  • Wei, S.; Liang, X.; Kong, B.; Cao, C.; Zhang, H.; Liu, Q.; Wang, H. Investigation of the Effects and Mechanism of Incorporation of Cross-Linked/acetylated Tapioca Starches on the Gel Properties and in vitro Digestibility of Kung-Wan. Meat Sci. 2023a, 204, 109265. DOI: 10.1016/j.meatsci.2023.109265.
  • Wei, S.; Liang, X.; Xu, Y.; Kong, B.; Li, X.; Zhang, H.; Liu, Q.; Wang, H. In-Depth Insight into the Effects of Tapioca or Corn Acetylated Distarch Phosphate on the Gel Properties and in vitro Digestibility of Kung-Wan. Int. J. Biol. Macromol. 2023b, 253, 126997. DOI: 10.1016/j.ijbiomac.2023.126997.
  • Wu, M.; Wang, J.; Ge, Q.; Yu, H.; Xiong, Y. L. Rheology and Microstructure of Myofibrillar Protein–Starch Composite Gels: Comparison of Native and Modified Starches. Int. J. Biol. Macromol. 2018, 118, 988–996. DOI: 10.1016/j.ijbiomac.2018.06.173.
  • Garcia-Santos, M. D. S. L.; ConceiÇÃo, F. S.; Villas Boas, F.; Salotti De Souza, B. M.; Barretto, A. C. D. S. Effect of the Addition of Resistant Starch in Sausage with Fat Reduction on the Physicochemical and Sensory Properties. Food Sci. Technol. 2019, 39(suppl 2), 491–497. DOI: 10.1590/fst.18918.
  • Jairath, G.; Sharma, D. P.; Dabur, R. S.; Singh, P. K.; Bishnoi, S. Standardization of Corn Starch as a Fat Replacer in Buffalo Calf Meat Sausages and Its Effect on the Quality Attributes. Ind. J. Animal Res. 2018, 52(10), 1521–1525. DOI: 10.18805/ijar.B-3381.
  • CFR (Code of Federal Regulations). Food Starch-Modified. Title 21, Chapter1, Part 172, Sec. 172.892. In Food Additives Permitted for Direct Addition to Food for Human Consumption; U.S. Government Printing Office: Washington, DC, 2022.