416
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessing the antioxidant potential of soft beverages in the Turkish market: a comprehensive study

ORCID Icon & ORCID Icon
Pages 478-492 | Received 30 Nov 2023, Accepted 17 Feb 2024, Published online: 21 Mar 2024

References

  • Liska, D.; Mah, E.; Brisbois, T.; Barrios, P. L.; Baker, L. B.; Spriet, L. L. Narrative Review of Hydration and Selected Health Outcomes in the General Population. Nutrients. 2019, 11(1), 70. DOI: 10.3390/nu11010070.
  • Nissensohn, M.; López-Ufano, M.; Castro-Quezada, I.; Serra-Majem, L. Assessment of beverage intake and hydration status. Nutr. Hosp. 2015, 31 Suppl 3, 62–69. DOI: 10.3305/nh.2015.31.sup3.8753.
  • Jéquier, E.; Constant, F. Water as an Essential Nutrient: The Physiological Basis of Hydration. Eur. J. Clin. Nutr. 2010, 64(2), 115–123. DOI: 10.1038/ejcn.2009.111.
  • Brenna, O. V. Chapter 6 - Antioxidant Capacity of Soft Drinks. In Processing and Impact on Antioxidants in Beverages; Preedy, V., Ed.; Academic Press: San Diego, 2014; pp. 51–56.
  • Guelinckx, I.; Ferreira-Pêgo, C.; Moreno, L. A.; Kavouras, S. A.; Gandy, J.; Martinez, H.; Bardosono, S.; Abdollahi, M.; Nasseri, E.; Jarosz, A., et al. Intake of Water and Different Beverages in Adults Across 13 Countries. Eur. J. Nutr. 2015, 54(2), 45–55.
  • Sikalidis, A. K.; Kelleher, A. H.; Maykish, A.; Kristo, A. S. Non-Alcoholic Beverages, Old and Novel, and Their Potential Effects on Human Health, with a Focus on Hydration and Cardiometabolic Health. Medicina. 2020, 56(10), 490. DOI: 10.3390/medicina56100490.
  • Malik, V. S.; Hu, F. B. Sugar-Sweetened Beverages and Cardiometabolic Health: An Update of the Evidence. Nutrients. 2019, 11(8), 1840. DOI: 10.3390/nu11081840.
  • Malik, V. S.; Hu, F. B. The Role of Sugar-Sweetened Beverages in the Global Epidemics of Obesity and Chronic Diseases. Nat. Rev. Endocrinol. 2022, 18(4), 205–218. DOI: 10.1038/s41574-021-00627-6.
  • Santos, L. P.; Gigante, D. P.; Delpino, F. M.; Maciel, A. P.; Bielemann, R. M. Sugar Sweetened Beverages Intake and Risk of Obesity and Cardiometabolic Diseases in Longitudinal Studies: A Systematic Review and Meta-Analysis with 1.5 Million Individuals. Clin. Nutr. ESPEN. 2022, 51, 128–142. DOI: 10.1016/j.clnesp.2022.08.021.
  • Ahn, H.; Park, Y. K. Sugar-Sweetened Beverage Consumption and Bone Health: A Systematic Review and Meta-Analysis. Nutr. J. 2021, 20(1), 41. DOI: 10.1186/s12937-021-00698-1.
  • Ferruzzi, M. G.; Tanprasertsuk, J.; Kris-Etherton, P.; Weaver, C. M.; Johnson, E. J. Perspective: The Role of Beverages as a Source of Nutrients and Phytonutrients. Adv. Nutr. 2020, 11(3), 507–523. DOI: 10.1093/advances/nmz115.
  • Nigra, A. D.; Teodoro, A. J.; Gil, G. A. A Decade of Research on Coffee as an Anticarcinogenic Beverage. OXID. MED. CELL LONGEV. 2021, 2021, 4420479. DOI: 10.1155/2021/4420479.
  • Vuong, Q. V. Epidemiological Evidence Linking Tea Consumption to Human Health: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54(4), 523–536. DOI: 10.1080/10408398.2011.594184.
  • Micek, A.; Currenti, W.; Godos, J. Plant-Based Polyphenol-Rich Foods and Beverages Influence Metabolic Health in a Mediterranean Cohort. Eur. J. Public Health. 2021, 31(Supplement_3). DOI: 10.1093/eurpub/ckab164.416.
  • Brimson, J. M.; Prasanth, M. I.; Malar, D. S.; Sharika, R.; Sivamaruthi, B. S.; Kesika, P.; Chaiyasut, C.; Tencomnao, T.; Prasansuklab, A. Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutri. 2021, 13(7), 2162. DOI: 10.3390/nu13072162.
  • Hinojosa-Nogueira, D.; Pérez-Burillo, S.; Pastoriza de la Cueva, S.; Rufián-Henares, J. Green and White Teas as Health-Promoting Foods. Food. Funct. 2021, 12(9), 3799–3819. DOI: 10.1039/d1fo00261a.
  • Liang, N.; Kitts, D. D. Antioxidant Property of Coffee Components: Assessment of Methods That Define Mechanisms of Action. Molecules. 2014, 19(11), 19180–19208. DOI: 10.3390/molecules191119180.
  • Wootton-Beard, P. C.; Ryan, L. Improving Public Health?: The Role of Antioxidant-Rich Fruit and Vegetable Beverages. Food Res. Int. 2011, 44(10), 3135–3148. DOI: 10.1016/j.foodres.2011.09.015.
  • Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects – a Review. J. Funct. Foods. 2015, 18, 820–897. DOI: 10.1016/j.jff.2015.06.018.
  • Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. OXID. MED. CELL LONGEV. 2017, 2017, 8416763. DOI: 10.1155/2017/8416763.
  • Pisoschi, A. M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015, 97, 55–74. DOI: 10.1016/j.ejmech.2015.04.040.
  • Sies, H. What is Oxidative Stress? In Oxidative Stress and Vascular Disease; Keaney, J. F., Ed.; Springer US: Boston, MA, 2000; pp. 1–8.
  • Fleming, E.; Luo, Y. Co-Delivery of Synergistic Antioxidants from Food Sources for the Prevention of Oxidative Stress. J. Agric. Food. Res. 2021, 3, 100107. DOI: 10.1016/j.jafr.2021.100107.
  • Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4(8), 118–126. DOI: 10.4103/0973-7847.70902.
  • Tan, B. L.; Norhaizan, M. E.; Liew, W.-P.-P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162–1162. DOI: 10.3389/fphar.2018.01162.
  • Varesi, A.; Chirumbolo, S.; Campagnoli, L. I. M.; Pierella, E.; Piccini, G. B.; Carrara, A.; Ricevuti, G.; Scassellati, C.; Bonvicini, C.; Pascale, A. The Role of Antioxidants in the Interplay Between Oxidative Stress and Senescence. Antioxidants. 2022, 11(7), 1224. DOI: 10.3390/antiox11071224.
  • Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L. T.; Boffetta, P.; Greenwood, D. C.; Tonstad, S.; Vatten, L. J.; Riboli, E.; Norat, T. Dietary Intake and Blood Concentrations of Antioxidants and the Risk of Cardiovascular Disease, Total Cancer, and All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2018, 108(5), 1069–1091. DOI: 10.1093/ajcn/nqy097.
  • Chen, P.; Zhang, W.; Wang, X.; Zhao, K.; Negi, D. S.; Zhuo, L.; Qi, M.; Wang, X.; Zhang, X. Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine. 2015, 94(33), e1260. DOI: 10.1097/md.0000000000001260.
  • Leermakers, E. T.; Darweesh, S. K.; Baena, C. P.; Moreira, E. M.; Melo van Lent, D.; Tielemans, M. J.; Muka, T.; Vitezova, A.; Chowdhury, R.; Bramer, W. M., et al. The Effects of Lutein on Cardiometabolic Health Across the Life Course: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2016, 103(2), 481–494.
  • Shahinfar, H.; Payandeh, N.; ElhamKia, M.; Abbasi, F.; Alaghi, A.; Djafari, F.; Eslahi, M.; Gohari, N. S. F.; Ghorbaninejad, P.; Hasanzadeh, M., et al. Administration of Dietary Antioxidants for Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Complement Ther. Med. 2021, 63, 102787. DOI: 10.1016/j.ctim.2021.102787.
  • Wang, S.; Meckling, K. A.; Marcone, M. F.; Kakuda, Y.; Tsao, R. Synergistic, Additive, and Antagonistic Effects of Food Mixtures on Total Antioxidant Capacities. J. Agric. Food. Chem. 2011, 59(3), 960–968. DOI: 10.1021/jf1040977.
  • Fraga, C. G.; Oteiza, P. I.; Galleano, M. In vitro Measurements and Interpretation of Total Antioxidant Capacity. Biochim. Biophys. Acta. 2014, 1840(2), 931–934. DOI: 10.1016/j.bbagen.2013.06.030.
  • Niki, E. Assessment of Antioxidant Capacity in vitro and in vivo. Free. Radic. Biol. Med. 2010, 49(4), 503–515. DOI: 10.1016/j.freeradbiomed.2010.04.016.
  • Erel, O. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clin. Biochem. 2004, 37(4), 277–285. DOI: 10.1016/j.clinbiochem.2003.11.015.
  • Koehnlein, E. A.; Bracht, A.; Nishida, V. S.; Peralta, R. M. Total Antioxidant Capacity and Phenolic Content of the Brazilian Diet: A Real Scenario. Int. J. Food Sci. Nutr. 2014, 65(3), 293–298. DOI: 10.3109/09637486.2013.879285.
  • Yang, M.; Chung, S.-J.; Chung, C. E.; Kim, D.-O.; Song, W. O.; Koo, S. I.; Chun, O. K. Estimation of Total Antioxidant Capacity from Diet and Supplements in US Adults. Br. J. Nutr. 2011, 106(2), 254–263. DOI: 10.1017/S0007114511000109.
  • Saura-Calixto, F.; Goñi, I. Antioxidant Capacity of the Spanish Mediterranean Diet. Food. Chem. 2006, 94(3), 442–447. DOI: 10.1016/j.foodchem.2004.11.033.
  • TC Sağlık Bakanlığı. Türkiye Beslenme ve Sağlık Araştırması (TBSA) 2017; Sağlık Bakanlığı Yayınları: Ankara, 2019.
  • Templeton, G. A Two-Step Approach for Transforming Continuous Variables to Normal: Implications and Recommendations for is Research. Comm. Asso. For Info. Systems. 2011, 28, 41–58. DOI: 10.17705/1CAIS.02804.
  • Budak, H. N. Alteration of Antioxidant Activity and Total Phenolic Content During the Eight-Week Fermentation of Apple Cider Vinegar. Horticult. Stud. 2021, 38(1), 39–45. DOI: 10.16882/hortis.882469.
  • Hong, M. Y.; Mansour, L.; Klarich, D. S.; Copp, L.; Bloem, K. Comparison of Antioxidant Capacity of Commonly Consumed Youth Beverages in the United States. Int. J. Food Sci & Tech. 2016, 51(6), 1409–1416. DOI: 10.1111/ijfs.13107.
  • Brenna, O. V.; Ceppi, E. L. M.; Giovanelli, G. Antioxidant Capacity of Some Caramel-Containing Soft Drinks. Food Chem. 2009, 115(1), 119–123. DOI: 10.1016/j.foodchem.2008.11.059.
  • Diamantini, G.; Pignotti, S.; Antonini, E.; Chiarabini, A.; Angelino, D.; Ninfali, P. Assessment of Antioxidant Capacity of Energy Drinks, Energy Gels and Sport Drinks in Comparison with Coffee and Tea. International Journal Of Food Science & Technology. 2015, 50(1), 240–248. DOI: 10.1111/ijfs.12615.
  • Krishnaveni, M.; Suresh, K.; Rajasekar, M. Antioxidant and Free Radical Scavenging Activity of Quinine Determined by Using Different in vitro Models. Int. J. Modn. Res. Revs. 2015, 3(1), 569–574.
  • Zujko, M. E.; Witkowska, A. M. Antioxidant Potential and Polyphenol Content of Beverages, Chocolates, Nuts, and Seeds. Int. J. Food Prop. 2014, 17(1), 86–92. DOI: 10.1080/10942912.2011.614984.
  • Oracz, J.; Nebesny, E. Antioxidant Properties of Cocoa Beans (Theobroma Cacao L.): Influence of Cultivar and Roasting Conditions. Int. J. Food Prop. 2016, 19(6), 1242–1258. DOI: 10.1080/10942912.2015.1071840.
  • Pinto, T.; Vilela, A. Healthy Drinks with Lovely Colors: Phenolic Compounds as Constituents of Functional Beverages. Beverages. 2021, 7(1), 12. DOI: 10.3390/beverages7010012.
  • Steinberg, F. M.; Bearden, M. M.; Keen, C. L. Cocoa and chocolate flavonoids: Implications for cardiovascular health. J. Am. Diet. Assoc. 2003, 103(2), 215–223. DOI: 10.1053/jada.2003.50028.
  • Liu, S.; Manson, J. E.; Lee, I. M.; Cole, S. R.; Hennekens, C. H.; Willett, W. C.; Buring, J. E. Fruit and Vegetable Intake and Risk of Cardiovascular Disease: The Women’s Health Study. Am. J. Clin. Nutr. 2000, 72(4), 922–928. DOI: 10.1093/ajcn/72.4.922.
  • Jaganath, I. B.; Crozier, A. Dietary Flavonoids and Phenolic Compounds. In Plant Phenolics and Human Health; Fraga, C. G.; Ed., John Wiley & Sons, Inc.: Hoboken, New Jersey, 2009; pp. 1–49.
  • Klein, A. V.; Kiat, H. Detox Diets for Toxin Elimination and Weight Management: A Critical Review of the Evidence. J. Human Nutr. Diet. 2015, 28(6), 675–686. DOI: 10.1111/jhn.12286.
  • Wern, K. H.; Haron, H.; Keng, C. B. Comparison of Total Phenolic Contents (TPC) and Antioxidant Activities of Fresh Fruit Juices, Commercial 100% Fruit Juices and Fruit Drinks. Sains Malays. 2016, 45(9), 1319–1327.
  • Matute, A.; Tabart, J.; Cheramy-Bien, J.-P.; Kevers, C.; Dommes, J.; Defraigne, J.-O.; Pincemail, J. Ex Vivo Antioxidant Capacities of Fruit and Vegetable Juices. Potential In Vivo Extrapolation. Antioxidants. 2021, 10(5), 770. DOI: 10.3390/antiox10050770.
  • Durazzo, A.; Lucarini, M.; Novellino, E.; Daliu, P.; Santini, A. Fruit-Based Juices: Focus on Antioxidant Properties—Study Approach and Update. Phytother. Res. 2019, 33(7), 1754–1769. DOI: 10.1002/ptr.6380.
  • Queirós, R. B.; Tafulo, P. A.; Sales, M. G. Assessing and Comparing the Total Antioxidant Capacity of Commercial Beverages: Application to Beers, Wines, Waters and Soft Drinks Using TRAP, TEAC and FRAP Methods. Comb. Chem. High Throughput Screen. 2013, 16(1), 22–31. DOI: 10.2174/1386207311316010004.
  • Bolling, B. W.; Chen, Y.-Y.; Chen, C.-Y. O. Contributions of Phenolics and Added Vitamin C to the Antioxidant Capacity of Pomegranate and Grape Juices: Synergism and Antagonism Among Constituents. Int. J. Food Sci & Technology. 2013, 48(12), 2650–2658. DOI: 10.1111/ijfs.12261.
  • Yashin, A.; Yashin, Y.; Wang, J. Y.; Nemzer, B. Antioxidant and Antiradical Activity of Coffee. Antioxidants. (Basel). 2013, 2(4), 230–245. DOI: 10.3390/antiox2040230.
  • Cyuńczyk, M.; Zujko, M. E.; Jamiołkowski, J.; Zujko, K.; Łapińska, M.; Zalewska, M.; Kondraciuk, M.; Witkowska, A. M.; Kamiński, K. A. Dietary Total Antioxidant Capacity is Inversely Associated with Prediabetes and Insulin Resistance in Bialystok PLUS Population. Dietary Total Antioxidant Capacity Is Inversely Associated With Prediabetes And Insulin Resistance In Bialystok PLUS Population. Antioxidants (Basel). 2022, 11(2), 283. DOI: 10.3390/antiox11020283.
  • Jun, S.; Chun, O. K.; Joung, H. Estimation of Dietary Total Antioxidant Capacity of Korean Adults. Eur. J. Nutr. 2018, 57(4), 1615–1625. DOI: 10.1007/s00394-017-1447-6.
  • Pulido, R.; Hernández-García, M.; Saura-Calixto, F. Contribution of Beverages to the Intake of Lipophilic and Hydrophilic Antioxidants in the Spanish Diet. Eur. J. Clin. Nutr. 2003, 57(10), 1275–1282. DOI: 10.1038/sj.ejcn.1601685.
  • Nascimento-Souza, M. A.; Paiva, P. G.; Silva, A. D.; Duarte, M. S. L.; Ribeiro, A. Q. Coffee and Tea Group Contribute the Most to the Dietary Total Antioxidant Capacity of Older Adults: A Population Study in a Medium-Sized Brazilian City. J. Am. Coll. Nutr. 2021, 40(8), 713–723. DOI: 10.1080/07315724.2020.1823281.
  • Kowalska, J.; Marzec, A.; Domian, E.; Galus, S.; Ciurzyńska, A.; Brzezińska, R.; Kowalska, H. Influence of Tea Brewing Parameters on the Antioxidant Potential of Infusions and Extracts Depending on the Degree of Processing of the Leaves of Camellia Sinensis. Molecules. 2021, 26(16), 4773. DOI: 10.3390/molecules26164773.
  • Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients. 2018, 11(1), 39. DOI: 10.3390/nu11010039.
  • Nikniaz, Z.; Mahdavi, R.; Ghaemmaghami, S. J.; Lotfi Yagin, N.; Nikniaz, L. Effect of Different Brewing Times on Antioxidant Activity and Polyphenol Content of Loosely Packed and Bagged Black Teas (Camellia Sinensis L.). Avicenna J. Phytomed. 2016, 6(3), 313–321.
  • Vuong, Q. V.; Pham, H. N. T.; Negus, C. From Herbal Teabag to Infusion&impact of Brewing on Polyphenols and Antioxidant Capacity. Beverages. 2022, 8(4), 81. DOI: 10.3390/beverages8040081.
  • Cleverdon, R.; Elhalaby, Y.; McAlpine, M. D.; Gittings, W.; Ward, W. E. Total Polyphenol Content and Antioxidant Capacity of Tea Bags: Comparison of Black, Green, Red Rooibos, Chamomile and Peppermint Over Different Steep Times. Beverages. 2018, 4(1), 15. DOI: 10.3390/beverages4010015.
  • Mejia, E. G. D.; Ramirez-Mares, M. V. Impact of Caffeine and Coffee on Our Health. Trends. Endocri. & Metabolism. 2014, 25(10), 489–492. DOI: 10.1016/j.tem.2014.07.003.
  • Brezová, V.; Šlebodová, A.; Staško, A. Coffee as a Source of Antioxidants: An EPR Study. Food. Chem. 2009, 114(3), 859–868. DOI: 10.1016/j.foodchem.2008.10.025.
  • Niseteo, T.; Komes, D.; Belščak-Cvitanović, A.; Horžić, D.; Budeč, M. Bioactive Composition and Antioxidant Potential of Different Commonly Consumed Coffee Brews Affected by Their Preparation Technique and Milk Addition. Food. Chem. 2012, 134(4), 1870–1877. DOI: 10.1016/j.foodchem.2012.03.095.
  • Rao, N. Z.; Fuller, M.; Grim, M. D. Physiochemical Characteristics of Hot and Cold Brew Coffee Chemistry: The Effects of Roast Level and Brewing Temperature on Compound Extraction. Foods. 2020, 9(7), 902. DOI: 10.3390/foods9070902.
  • Çelik, E. E.; Gökmen, V. A Study on Interactions Between the Insoluble Fractions of Different Coffee Infusions and Major Cocoa Free Antioxidants and Different Coffee Infusions and Dark Chocolate. Food Chem. 2018, 255, 8–14. DOI: 10.1016/j.foodchem.2018.02.048.
  • Gorjanović, S.; Komes, D.; Laličić-Petronijević, J.; Pastor, F. T.; Belščak-Cvitanović, A.; Veljović, M.; Pezo, L.; Sužnjević, D. Antioxidant Efficiency of Polyphenols from Coffee and Coffee Substitutes-Electrochemical versus Spectrophotometric Approach. J. Food Sci. Technol. 2017, 54(8), 2324–2331. DOI: 10.1007/s13197-017-2672-y.
  • Stanek, N.; Zarębska, M.; Biłos, Ł.; Barabosz, K.; Nowakowska-Bogdan, E.; Semeniuk, I.; Błaszkiewicz, J.; Kulesza, R.; Matejuk, R.; Szkutnik, K. Influence of Coffee Brewing Methods on the Chromatographic and Spectroscopic Profiles, Antioxidant and Sensory Properties. Sci. Rep. 2021, 11(1), 21377. DOI: 10.1038/s41598-021-01001-2.
  • Chen, L.; Zhu, Y.; Hu, Z.; Wu, S.; Jin, C. Beetroot as a Functional Food with Huge Health Benefits: Antioxidant, Antitumor, Physical Function, and Chronic Metabolomics Activity. Food Sci& Nutrition. 2021, 9(11), 6406–6420. DOI: 10.1002/fsn3.2577.
  • Altay, F.; Karbancıoglu-Güler, F.; Daskaya-Dikmen, C.; Heperkan, D. A Review on Traditional Turkish Fermented Non-Alcoholic Beverages: Microbiota, Fermentation Process and Quality Characteristics. Int. J. Food Microbiol. 2013, 167(1), 44–56. DOI: 10.1016/j.ijfoodmicro.2013.06.016.
  • Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants (Basel). 2020, 9(5), 447. DOI: 10.3390/antiox9050447.
  • Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D. S.; Jakobsen, R. R.; Castro-Mejía, J. L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G., et al. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients. 2019, 11(1), 1.
  • Yalçınçıray, Ö.; Vural, N.; Anlı, R. E. Effects of Non-Alcoholic Malt Beverage Production Process on Bioactive Phenolic Compounds. J. Food Meas. Charact. 2020, 14(3), 1344–1355. DOI: 10.1007/s11694-020-00384-6.
  • Irkin, R. 14 - Natural Fermented Beverages. In Natural Beverages; Grumezescu, A. M., and Holban, A. M., Eds.; Academic Press: Duxford, UK, 2019; pp. 399–425.