292
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on visual localization and evaluation of automatic freshwater fish cutting system based on deep learning framework

, , , &
Pages 516-531 | Received 20 Nov 2023, Accepted 09 Mar 2024, Published online: 22 Mar 2024

References

  • Wang, H.; Wan, P.; Tan, H.; Zong, L. Design and Experiment of On-Line Detection and Classification System for Freshwater Fish Body Quality. J. Huazhong Agric. Univ. 2016, 3, 122–128.
  • Hu, X.; Chen, Q.; Shen, J. Optimization of Slitting Cutters Used for Gutting TrachuYUS Japohicus. Trans. Chin. Soc. Agric. Eng. 2014, 12, 270–277.
  • Li, K.; Wen, Y. Key Technology of Vision-Guided Automatic Head and Tail Removal System for Freshwater Fish. Food Mach. 2014, 30(5), 141–143.
  • Li, L.; Zong, L.; Wang, J.; Cheng, S. Research Status and Development Trend of Massive Freshwater Fish Pretreatment Processing Technology and Equipment. Fish. Modernization. 2010, 37(5), 43–46.
  • Zhang, W.; Chen, Q.; Ouyang, J.; Zhou, C. Research Progress on Pretreatment and Processing Technology of Freshwater Fish in China. J Anhui Agric. Sci. 2018, 46(21), 25–28.
  • Zhao, Y.; Hu, H.; Jiang, G.; Ge, X. Current Status and Development Trend on National Conventional Freshwater Fishery Industry. Chinese Fish. Econ. 2012, 30(5), 91–99.
  • Shen, J. Freshwater Fish Pre-Processing and Equipment in Europe. J. Anhui Agric. Sci. 2010, 38(23), 12491–12495.
  • Yuan, Y.; Yuan, Y. M.; Dai, Y.; He, Y.; Gong, Y. Competitive Advantage of Characteristic Freshwater Fish Industry of China. Chinese Agric. Sci. Bull. 2020, 36(35), 127–133.
  • Kosmowski, M.; Gerlach, K. The New Method of Setting the Small Fishes Backs in the Desired Direction. J. Food Eng. 2007, 83 (1), 99–105. DOI: 10.1016/j.jfoodeng.2007.01.022.
  • Mendes, B.; Fonseca, P.; Campos, A. Weight-Length Relationships for 46 Fish Species of the Portuguese West Coast. J. Appl. Ichthyol. 2004, 20(5) 355–361. DOI: 10.1111/j.1439-0426.2004.00559.x.
  • Sullivan, K. Fish Harvesting Head with Arm Retraction System. Official Gazette of the United States Patent and Trademark Office Patents. Patent US 10034464, 2018.
  • Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit Detection and Positioning Technology for a Camellia Oleifera C. Abel Orchard Based on Improved YOLOv4-Tiny Model and Binocular Stereo Visio. Expert Syst. Appl. 2023, 211(57), 174. DOI: 10.1016/j.eswa.2022.118573.
  • Andrzej, D. The Effect of Cutting and Fish-Orientation Systems on the Deheading Yield of Carp. Int. J. Food Sci. Technol. 2018, 43, 1688–1692.
  • Alejandro, B.; Aníbal, M.; María, A.; Aurora, Z. Design and Testing of a Fish Bone Separator Machine. Int. J. Food Eng., 2020, 100(3), 474–479. DOI: 10.1016/j.jfoodeng.2010.04.034.
  • Bhushan, R.; Bibwe, S.; Udaykumar, R.; Nidoni, M.; Anantachar, B. Development of Meat-Bone Separator for Small Scale Fish Processing. J. Food Sci. Technol. 2013, 50(4), 763–769. DOI: 10.1007/s13197-011-0381-5.
  • Dowgiallo, A.; Dutkiewicz, D. Possibilities of Utilizing the Differences of Fish Tissues Stiffness in the Mechanization of Cyprinid Deheading. J. Food Eng. 2007, 83, 111–115. DOI: 10.1016/j.jfoodeng.2007.01.028.
  • Zhang, Y.; Zhang, K.; Hu, Z. Research on Head Orientation Equipment of Freshwater Fish. Proceedings of the 2020 3rd International Conference on E-Business, Information Management and Computer Science, 2020, 12, 477–481.
  • Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel Visual Crack Width Measurement Based on Backbone Double-Scale Features for Improved Detection Automation. Eng. Struct. 2023, 274(141), 296. DOI: 10.1016/j.engstruct.2022.115158.
  • Liu, J.; Zhang, F.; Wan, P.; Tan, H. Freshwater Fish Pneumatic Machinery to Head-Cutting Method Research. Food Mach. 2017, 33(1), 87–92.
  • Chen, Q.; Shen, J.; Fu, R.; Tan, J.; Zhang, J. Research on the Mechanical Deheading Method of Typical Small Marine Fish. Fish. Modernization. 2012, 39(5), 38–42.
  • Zhao, Z. Mechanized Processing of Dace. Fish. Modernization. 2005, 337, 36–37.
  • Qin, H.; Li, X.; Liang, J.; Peng, Y.; Zhang, C. Deep Fish: Accurate Underwater Live Fish Recognition with a Deep Architecture. Neurocomputing. 2016, 187, 49–58. DOI: 10.1016/j.neucom.2015.10.122.
  • Sharmin, I.; Islam, N. F.; Jahan, I.; Joye, T. A.; Rahman, M. R.; Habib, M. T. Machine Vision Based Local Fish Recognition. Appl. Sci. 2019, 1(12), 1529. DOI: 10.1007/s42452-019-1568-z.
  • Sung, H.; Park, M. K.; Choi, J. W. Automatic Grader for Flatfishes Using Machine Vision. Int. J. Control Autom. Syst. 2020, 18(12), 3073–3082. DOI: 10.1007/s12555-020-0007-7.
  • Wei, Y.; Zheng, D.; Hu, L.; Zhan, J. Research on Intelligent Bait Casting Method Based on Machine Vision Technology. Adv. Mater. Res. 2015, 8, 1871–1874. DOI: 10.4028/www.scientific.net/AMR.1073-1076.1871.
  • Qian, Z.; Wang, S.; Cheng, X.; Chen, Y. An Effective and Robust Method for Tracking Multiple Fish in Video Image Based on Fish Head Detection. BMC Bioinf. 2016, 17(1), 251. DOI: 10.1186/s12859-016-1138-y.
  • Singh, A.; Gupta, H.; Srivastava, A.; Joshi, R. C.; Dutta, M. K. A Novel Pilot Study on Imaging-Based Identification of Fish Exposed to Heavy Metal (Hg) Contamination. J. Food Process. Preserv. 2021, 45(6), e15571. DOI: 10.1111/jfpp.15571.
  • Sabat, M.; Kotwaliwale, N.; Chakraborty, S. K.; Kumar, M. Long Short-Term Memory Based Real-Time Monitoring of Potato Slice Drying Using Image Chromatic Features. J. Food Process. Preserv. 2022, 10(26), e17232. DOI: 10.1111/jfpp.17232.
  • White, D. J.; Svellingen, C.; Strachan, N. J. C. Automated Measurement of Species and Length of Fish by Computer Vision. Fish. Res. 2006, 80(2), 203–210. DOI: 10.1016/j.fishres.2006.04.009.
  • Dowlati, M.; Mohtasebi, S.; Guardia, M. Application of Machine-Vision Techniques to Fish-Quality Assessment. Trac-Trends Anal. Chem. 2012, 11(40), 168–179. DOI: 10.1016/j.trac.2012.07.011.
  • Hong, H. M.; Yang, X. L.; You, Z. H.; Cheng, F. Visual quality detection of aquatic products using machine vision. Aquacult. Eng. 2014, 12(63), 62–71. DOI: 10.1016/j.aquaeng.2014.10.003.
  • Zhu, M.; Zhang, Z.; Huang, H.; Chen, Y.; Liu, Y.; Dong, T. Classification of Feeding Status of Bass Based on Lightweight Neural Network MobileNetv3-Small. J. Agric. Eng. 2021, 37(19), 165–172.
  • Fang, S. Research on Deep Learning Based Method for Measuring Fish Phenotype Data. Zhejiang Univ. 2021, (01). DOI: 10.27461/d.cnki.gzjdx.2021.002100.
  • Zhao, S.; Wang, S.; Bai, Y.; Hao, Z.; Tu, S. Real-Time Semantic Segmentation of Sheep Skeleton Images Based on Generative Adversarial Networks and ICNet. J. Agric. Mach. 2021, 52(2), 329–339. DOI: 10.1155/2021/8847984.
  • Guo, J.; Xin, Y.; Xie, Q. Improved DeepLabv3+ for Remote Sensing Image Building Segmentation. Laser J. 2023, 1, 1–10.
  • Ren, W.; Han, X.; Zhong, Y.; He, F. A Photovoltaic Panel Image Segmentation Method Based on Improved U-Net Network. J. Shaanxi Univ. Sci.Technol. 2023, 41(2), 155–161.
  • Zhang, Z.; Qian, Q.; Zhou, Z.; Hu, X. Real-Time Segmentation Algorithm for Crack Images Based on Improved Fast-SCNN. Appl. Opt. 2023, 44(3), 539–547. DOI: 10.5768/JAO202344.0302001.
  • Chen, L. C.; Papandreou, G.; Kokkinos, I. Deeplab: Semantic Image Segmentation with Deep Convalutional Nets, Atrous Convolution, and Fully Connected, Crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40(4), 834–848. DOI: 10.1109/TPAMI.2017.2699184.