460
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Resistant starch formation and changes in physicochemical properties of waxy and non-waxy rice starches by autoclaving-cooling treatment

ORCID Icon, , , & ORCID Icon
Pages 532-548 | Received 23 Nov 2023, Accepted 09 Mar 2024, Published online: 26 Mar 2024

References

  • Huang, L.; Tan, H.; Zhang, C.; Li, Q.; Liu, Q. Starch Biosynthesis in Cereal Endosperms: An Updated Review Over the Last Decade. Plant Commun. 2021, 2(5), 100237. DOI: 10.1016/j.xplc.2021.100237.
  • Sangwongchai, W.; Tananuwong, K.; Krusong, K.; Natee, S.; Thitisaksakul, M. Starch Chemical Composition and Molecular Structure in Relation to Physicochemical Characteristics and Resistant Starch Content of Four Thai Commercial Rice Cultivars Differing in Pasting Properties. Polym. 2023, 15(3), 574. DOI: 10.3390/polym15030574.
  • Ashwar, B. A.; Gani, A.; Wani, I. A.; Shah, A.; Masoodi, F. A.; Saxena, D. C. Production of Resistant Starch from Rice by Dual Autoclaving-Retrogradation Treatment: Invitro Digestibility, Thermal and Structural Characterization. Food Hydrocoll. 2016, 56, 108–117. DOI: 10.1016/j.foodhyd.2015.12.004.
  • Dipnaik, K.; Kokare, P. Ratio of Amylose and Amylopectin As Indicators of Glycaemic Index and in vitro Enzymatic Hydrolysis of Starches of Long, Medium and Short Grain Rice. Int. J. Res. Med. Sci. Technol. 2017, 5(10), 4502–4505. DOI: 10.18203/2320-6012.ijrms20174585.
  • Colussi, R.; Pinto, V. Z.; El Halal, S. L. M.; Vanier, N. L.; Villanova, F. A.; E Silva, R. M.; Da Rosa Zavareze, E.; Dias, A. R. G. Structural, Morphological, and Physicochemical Properties of Acetylated High-, Medium-, and Low-Amylose Rice Starches. Carbohydr. Polym. 2014, 103, 405–413. DOI: 10.1016/j.carbpol.2013.12.070.
  • Sun, H.; Fan, J.; Tian, Z.; Ma, L.; Meng, Y.; Yang, Z.; Zeng, X.; Liu, X.; Kang, L.; Nan, X. Effects of Treatment Methods on the Formation of Resistant Starch in Purple Sweet Potato. Food Chem. 2022, 367, 130580. DOI: 10.1016/j.foodchem.2021.130580.
  • Ratnaningsih, N.; Harmayani, E.; Marsono, Y. Physicochemical Properties, in vitro Starch Digestibility, and Estimated Glycemic Index of Resistant Starch from Cowpea (Vigna Unguiculata) Starch by Autoclaving-Cooling Cycles. Int J Biol Macromol. 2020, 142, 191–200. DOI: 10.1016/j.ijbiomac.2019.09.092.
  • Ma, Z.; Boye, J. I. Research Advances on Structural Characterization of Resistant Starch and Its Structure-Physiological Function Relationship: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58(7), 1059–1083. DOI: 10.1080/10408398.2016.1230537.
  • Wang, R.; Rui, P.; Wang, T.; Feng, W.; Chen, Z.; Luo, X.; Zhang, H. Resistant Starch Formation Mechanism of Amylosucrase-Modified Starches with Crystalline Structure Enhanced by Hydrothermal Treatment. Food Chem. 2023, 414, 135703. DOI: 10.1016/j.foodchem.2023.135703.
  • Dongowski, G.; Jacobasch, G.; Schmiedl, D. Structural Stability and Prebiotic Properties of Resistant Starch Type 3 Increase Bile Acid Turnover and Lower Secondary Bile Acid Formation. J. Agric. Food. Chem. 2005, 53(23), 9257–9267. DOI: 10.1021/jf0507792.
  • Shah, A.; Masoodi, F. A.; Gani, A.; Ashwar, B. A. In-vitro Digestibility, Rheology, Structure, and Functionality of RS3 from Oat Starch. Food Chem. 2016, 212, 749–758. DOI: 10.1016/j.foodchem.2016.06.019.
  • Herawati, E.; Ariani, D.; Nurhayati, R.; Miftakhussolikhah, M.; Na’imah, H.; Marsono, Y. In Effect of Autoclaving-Cooling Treatments on Chemical Characteristic and Structure of Tacca (Tacca Leontopetaloides) Starch, 5th International Conference on Food, Agriculture and Natural Resources (FANRes 2019), Atlantis Press: 2020; pp 169–172. DOI: 10.2991/aer.k.200325.034.
  • Sangwongchai, W.; Tananuwong, K.; Krusong, K.; Thitisaksakul, M. Yield, Grain Quality, and Starch Physicochemical Properties of 2 Elite Thai Rice Cultivars Grown Under Varying Production Systems and Soil Characteristics. Foods. 2021, 10(11), 2601. DOI: 10.3390/foods10112601.
  • AACC. AACC Official Methods 32-40.01 And 44-19. (Online) AACC Approved Methods Of Analysis, 11th Edition. https://www.cerealsgrains.org/resources/methods/Pages/default.aspx (Accessed 2 2 2023).
  • Sangwongchai, W.; Krusong, K.; Thitisaksakul, M. Salt Tolerance at Vegetative Stage Is Partially Associated with Changes in Grain Quality and Starch Physicochemical Properties of Rice Exposed to Salinity Stress at Reproductive Stage. J. Sci. Food Agric. 2022, 102(1), 370–382. DOI: 10.1002/jsfa.11367.
  • Thitisaksakul, M.; Sangwongchai, W.; Mungmonsin, U.; Promrit, P.; Krusong, K.; Wanichthanarak, K.; Tananuwong, K. Granule Morphological and Structural Variability of Thai Certified Glutinous Rice Starches in Relation to Thermal, Pasting, and Digestible Properties. Cereal Chem. 2021, 98(3), 492–506. DOI: 10.1002/cche.10389.
  • Sangwongchai, W.; Thitisaksakul, M.; Sriwattana, N.; Phothiset, S.; Sakloetsakun, D.; Dongsansuk, A. Chemical Composition, Structural Features, and Physicochemical Properties of Starches from Thai Indigenous Rice Varieties. Int. J. Food. Prop. 2024, 27(1), 34–52. DOI: 10.1080/10942912.2023.2293465.
  • Thitisaksakul, M.; Tananuwong, K.; Shoemaker, C. F.; Chun, A.; Tanadul, O. U. M.; Labavitch, J. M.; Beckles, D. M. Effects of Timing and Severity of Salinity Stress on Rice (Oryza Sativa L.) Yield, Grain Composition, and Starch Functionality. J. Agric. Food. Chem. 2015, 63(8), 2296–2304. DOI: 10.1021/jf503948p.
  • Ren, N.; Ma, Z.; Xu, J.; Hu, X. Insights into the Supramolecular Structure and Techno-Functional Properties of Starch Isolated from Oat Rice Kernels Subjected to Different Processing Treatments. Food Chem. 2020, 317, 126464. DOI: 10.1016/j.foodchem.2020.126464.
  • Gong, M.; Li, X.; Xiong, L.; Sun, Q. Retrogradation Property of Starch Nanoparticles Prepared by Pullulanase and recrystallization. Starke. 2016, 68(3–4), 230–238. DOI: 10.1002/star.201500115.
  • Lu, X.; Shi, C.; Zhu, J.; Li, Y.; Huang, Q. Structure of Starch-Fatty Acid Complexes Produced via Hydrothermal Treatment. Food Hydrocoll. 2019, 88, 58–67. DOI: 10.1016/j.foodhyd.2018.09.034.
  • Kurdziel, M.; Labanowska, M.; Pietrzyk, S.; Sobolewska-Zielińska, J.; Michalec, M. Changes in the Physicochemical Properties of Barley and Oat Starches Upon the Use of Environmentally Friendly Oxidation Methods. Carbohydr. Polym. 2019, 210, 339–349. DOI: 10.1016/j.carbpol.2019.01.088.
  • Anggreini, R. A.; Choiriyah, N. A.; Athennia, A. Modification of Sorghum Bicolor (L) Moench Starch: Review of HMT (Heat Moisture Treatment), Autoclaving Cooling, and Annealing Methods. Int. J. Adv. Trop. Food. 2021, 3(2), 57–66. DOI. DOI: 10.26877/ijatf.v3i2.9927.
  • Agama-Acevedo, E.; Pacheco-Vargas, G.; Bello-Pérez, L.; Alvarez-Ramirez, J. Effect of Drying Method and Hydrothermal Treatment of Pregelatinized Hylon VII Starch on Resistant Starch Content. Food Hydrocoll. 2018, 77, 817–824. DOI: 10.1016/j.foodhyd.2017.11.025.
  • Faridah, D. N.; Silitonga, R. F.; Indrasti, D.; Afandi, F. A.; Jayanegara, A.; Anugerah, M. P. Verification of Autoclaving-Cooling Treatment to Increase the Resistant Starch Contents in Food Starches Based on Meta-Analysis Result. Front Nutr. 2022, 9. DOI: 10.3389/fnut.2022.904700.
  • Cornejo-Ramírez, Y. I.; Martínez-Cruz, O.; Del Toro-Sánchez, C. L.; Wong-Corral, F. J.; Borboa-Flores, J.; Cinco-Moroyoqui, F. J. The Structural Characteristics of Starches and Their Functional Properties. CyTA - J. Food. 2018, 16(1), 1003–1017. DOI: 10.1080/19476337.2018.1518343.
  • Wang, A.; Li, R.; Ren, L.; Gao, X.; Zhang, Y.; Ma, Z.; Ma, D.; Luo, Y. A Comparative Metabolomics Study of Flavonoids in Sweet Potato with Different Flesh Colors (Ipomoea Batatas (L.) Lam). Food Chem. 2018, 260, 124–134. DOI: 10.1016/j.foodchem.2018.03.125.
  • Chakraborty, I.; Govindaraju, I.; Kunnel, S.; Managuli, V.; Mazumder, N. Effect of Storage Time and Temperature on Digestibility, Thermal, and Rheological Properties of Retrograded Rice. Gels. 2023, 9(2), 142. DOI: 10.3390/gels9020142.
  • Zhang, C. W.; Li, F. Y.; Li, J. F.; Li, Y. L.; Xu, J.; Xie, Q.; Chen, S.; Guo, A. F. Novel Treatments for Compatibility of Plant Fiber and Starch by Forming New Hydrogen Bonds. J. Clean. Prod. 2018, 185, 357–365. DOI: 10.1016/j.jclepro.2018.03.001.
  • Ma, Z.; Hu, X.; Boye, J. I. Research Advances on the Formation Mechanism of Resistant Starch Type III: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60(2), 276–297. DOI: 10.1080/10408398.2018.1523785.
  • Tangsrianugul, N.; Wongsagonsup, R.; Suphantharika, M. Physicochemical and Rheological Properties of Flour and Starch from Thai Pigmented Rice Cultivars. Int J Biol Macromol. 2019, 137, 666–675. DOI: 10.1016/j.ijbiomac.2019.06.196.
  • Obiro, W. C.; Sinha Ray, S.; Emmambux, M. N. V-Amylose Structural Characteristics, Methods of Preparation, Significance, and Potential Applications. Food Rev. Int. 2012, 28(4), 412–438. DOI: 10.1080/87559129.2012.660718.
  • Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14(5), 568–585. DOI: 10.1111/1541-4337.12143.
  • Beta, T.; Obilana, A. B.; Corke, H. Genetic Diversity in Properties of Starch from Zimbabwean Sorghum Landraces. Cereal Chem. 2001, 78(5), 583–589. DOI: 10.1094/CCHEM.2001.78.5.583.
  • Li, Q.; Shi, S.; Dong, Y.; Yu, X. Characterisation of Amylose and Amylopectin with Various Moisture Contents After Frying Process: Effect of Starch–Lipid Complex Formation. Int. J. Food Sci. Technol. 2021, 56(2), 639–647. DOI: 10.1111/ijfs.14712.
  • Kong, X.; Zhu, P.; Sui, Z.; Bao, J. Physicochemical Properties of Starches from Diverse Rice Cultivars Varying in Apparent Amylose Content and Gelatinisation Temperature Combinations. Food Chem. 2015, 172, 433–440. DOI: 10.1016/j.foodchem.2014.09.085.