722
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Longitudinal analysis of electrolyte prolife in intensive care COVID-19 patients

, , , , , , , & show all
Pages 266-276 | Received 14 Dec 2022, Accepted 13 Mar 2023, Published online: 21 Mar 2023

References

  • Martins-Filho PR, Tavares CSS, Santos VS. Factors associated with mortality in patients with COVID-19. A quantitative evidence synthesis of clinical and laboratory data. Eur J Intern Med. 2020;76:97–99.
  • Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med CCLM. 2020;58(7):1131–1134.
  • Henry BM, de Oliveira MHS, Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med CCLM. 2020;58(7):1021–1028. DOI:10.1515/cclm-2020-0369
  • Tezcan ME, Dogan Gokce G, Sen N, et al. Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients. New Microbes New Infect. 2020;37:100753.
  • Rostami Z, Shafei S, Nemati E, et al. POS-109 COMMON ELECTROLYTE ABNORMALITIES in HOSPITALIZED COVID-19 PATIENTS. Kidney Int Rep. 2021;6(4):S45. DOI:10.1016/j.ekir.2021.03.117
  • Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem Int J Lab Med. 2020;57(3):262–265.
  • Ravens U, Cerbai E. Role of potassium currents in cardiac arrhythmias. Europace. 2008;10(10):1133–1137.
  • DiNicolantonio JJ, O’keefe JH. Magnesium and Vitamin D deficiency as a potential cause of immune dysfunction, cytokine storm and disseminated intravascular coagulation in COVID-19 patients. Mo Med. 2021;118(1):68–73.
  • Moreno-Pérez O, Leon-Ramirez J-M, Fuertes-Kenneally L, et al. Hypokalemia as a sensitive biomarker of disease severity and the requirement for invasive mechanical ventilation requirement in COVID-19 pneumonia: a case series of 306 Mediterranean patients. Int J Infect Dis. 2020;100:449–454.
  • Limaye CS, Londhey VA, Nadkart MY, et al. Hypomagnesemia in critically ill medical patients. J Assoc Physicians India. 2011;59:19–22.
  • Atila C, Sailer CO, Bassetti S, et al. Prevalence and outcome of dysnatremia in patients with COVID-19 compared to controls. Eur J Endocrinol. 2021;184(3):413–422. DOI:10.1530/EJE-20-1374
  • Liu S, Zhang L, Weng H, et al. Association between average plasma potassium levels and 30-day mortality during hospitalization in patients with COVID-19 in Wuhan, China. Int J Med Sci. 2021;18(3):736–743. DOI:10.7150/ijms.50965
  • van Kempen Tatg, Deixler E, van Kempen TATG. SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. Am J Physiol Endocrinol Metab. 2021;320(1):E2–6.
  • Kunutsor SK, Laukkanen JA. Renal complications in COVID-19: a systematic review and meta-analysis. Ann Med. 2020;52(7):345–353.
  • Noori M, Nejadghaderi SA, Sullman MJM, et al. How SARS-CoV-2 might affect potassium balance via impairing epithelial sodium channels? Mol Biol Rep. 2021;48(9):6655–6661. DOI:10.1007/s11033-021-06642-0
  • Zaika O, Mamenko M, Staruschenko A, et al. Direct activation of ENaC by angiotensin II: recent advances and new insights. Curr Hypertens Rep. 2013;15(1):17–24. DOI:10.1007/s11906-012-0316-1
  • Zimmer MA, Zink AK, Weißer CW, et al. Hypernatremia—a manifestation of COVID-19: a case series. A&A Practice. 2020;14(9):e01295. DOI:10.1213/XAA.0000000000001295
  • Bennouar S, Cherif AB, Kessira A, et al. Vitamin D deficiency and low serum calcium as predictors of poor prognosis in patients with severe COVID-19. J Am Coll Nutr. 2021;40(2):104–110. DOI:10.1080/07315724.2020.1856013
  • El-Kurdi B, Khatua B, Rood C, et al. Mortality from coronavirus disease 2019 increases with unsaturated fat and may be reduced by early calcium and albumin supplementation. Gastroenterology. 2020;159(3):1015–1018.e4. DOI:10.1053/j.gastro.2020.05.057
  • Tzoulis P, Waung JA, Bagkeris E, et al. Dysnatremia is a predictor for morbidity and mortality in hospitalized patients with COVID-19. J Clin Endocrinol Metab. 2021;107(6):1637–1648. dgab.
  • Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020;79–80:111017.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. DOI:10.1016/S0140-6736(20)30183-5
  • Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–184.
  • Cai Q, Huang D, Yu H, et al. COVID-19: abnormal liver function tests. J Hepatol. 2020;73(3):566–574. DOI:10.1016/j.jhep.2020.04.006
  • Redant S, Vanderhulst J, Maillart E, et al. Significance of hypernatremia due to SARS-CoV-2 associated ARDS in critically ill patients. J Transl Intern Med. 2020;8(4):255–260. DOI:10.2478/jtim-2020-0038
  • Lindner G, Funk G-C, Schwarz C, et al. Hypernatremia in the critically Ill is an independent risk factor for mortality. Am J Kidney Dis. 2007;50(6):952–957. DOI:10.1053/j.ajkd.2007.08.016
  • Darmon M, Timsit J-F, Francais A, et al. Association between hypernatraemia acquired in the ICU and mortality: a cohort study. Nephrol Dial Transplant. 2010;25(8):2510–2515. DOI:10.1093/ndt/gfq067
  • Casey J, Semler M, Rice T. Fluid management in acute respiratory distress syndrome. Semin Respir Crit Care Med. 2019;40(01):057–065.
  • Pan X, Xu D, Zhang H, et al. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive care Med. 2020;46(6):1114–1116. DOI:10.1007/s00134-020-06026-1
  • Oren RM. Hyponatremia in congestive heart failure. Am J Cardiol. 2005;95(9):2–7.
  • Schlondorff D. Renal complications of nonsteroidal anti-inflammatory drugs. Kidney Int. 1993;44(3):643–653.
  • de La Flor Jc, Gomez-Berrocal A, Marschall A, et al. Impacto de la corrección temprana de la hiponatremia en el pronóstico de la infección del síndrome respiratorio agudo grave del coronavirus 2 (SARS-CoV-2). Medicina Clínica. 2021;159(1):S0025775321004619. DOI:10.1016/j.medcli.2021.07.006
  • Ohta M, Ito S. [Hyponatremia and inflammation]. Rinsho Byori. 1999;47(5):408–416.
  • Swart RM, Hoorn EJ, Betjes MG, et al. Hyponatremia and inflammation: the emerging role of interleukin-6 in osmoregulation. Nephron Physiol. 2011;118(2):45–p51. DOI:10.1159/000322238
  • Berni A, Malandrino D, Parenti G, et al. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: may all fit together? J Endocrinol Invest. 2020;43(8):1137–1139. DOI:10.1007/s40618-020-01301-w
  • Melo AKG, Milby KM, Caparroz ALMA, et al. Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: a living systematic review and meta-analysis. PLoS ONE. 2021;16(6):e0253894. DOI:10.1371/journal.pone.0253894
  • Post A, Dullaart RPF, Bakker SJL. Sodium status and kidney involvement during COVID-19 infection. Virus Res. 2020;286:198034.
  • Benedetti C, Waldman M, Zaza G, et al. COVID-19 and the kidneys: an update. Front Med. 2020;7:423.
  • Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020;16(6):308–310.
  • Demirci T, Deshwal H, Goldenberg R. THE ‘CLOT’ THICKENS: hYPERKALEMIA DUE to ACUTE LIMB ISCHEMIA in COVID-19. Chest. 2021;160(4):A613.
  • Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017–1032. DOI:10.1038/s41591-020-0968-3
  • Szabó GT, Kiss A, Csanádi Z, et al. Hypothetical dysfunction of the epithelial sodium channel may justify neurohumoral blockade in coronavirus disease 2019. ESC Heart Fail. 2021;8(1):171–174. DOI:10.1002/ehf2.13078
  • Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol. 2015;309(11):L1229–1238.
  • Sidhu K, Sanjanwala R, Zieroth S. Hyperkalemia in heart failure. Curr Opin Cardiol. 2020;35(2):150–155.
  • Aull L, Chao H, Coy K. Heparin-induced hyperkalemia. DICP Ann Pharmacother. 1990;24(3):244–246.
  • Alfano G, Ferrari A, Fontana F, et al. Hypokalemia in patients with COVID-19. Clin Exp Nephrol. 2021;25(4):401–409. DOI:10.1007/s10157-020-01996-4
  • Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China. JAMA Netw Open. 2020;3(6):e2011122. DOI:10.1001/jamanetworkopen.2020.11122
  • Nasomsong W, Ungthammakhun C, Phiboonbanakit D, et al. Low serum potassium among patients with COVID-19 in Bangkok, Thailand: coincidence or clinically relevant? Trop Doct. 2020;51(2):004947552097817. DOI:10.1177/0049475520978174
  • Tian Y, Rong L, Nian W, et al. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843–851. DOI:10.1111/apt.15731
  • Sun J-K, Zhang W-H, Zou L, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging. 2020;12(12):11287–11295. DOI:10.18632/aging.103526
  • Pal R, Ram S, Zohmangaihi D, et al. High prevalence of hypocalcemia in non-severe COVID-19 patients: a retrospective case-control study. Front Med. 2021;7:590805.
  • Kelly A, Levine MA. Hypocalcemia in the Critically Ill patient. J Intensive Care Med. 2013;28(3):166–177.
  • Pranata R, Supriyadi R, Huang I, et al. The association between chronic kidney disease and new onset renal replacement therapy on the outcome of COVID-19 Patients: a meta-analysis. Clin Med Insights: Circ Respir Pulm Med. 2020;14:117954842095916.
  • Di Filippo L, Formenti AM, Rovere-Querini P, et al. Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19. Endocrine. 2020;68(3):475–478. DOI:10.1007/s12020-020-02383-5
  • Lind L, Carlstedt F, Rastad J, et al. Hypocalcemia and parathyroid hormone secretion in critically ill patients. Crit Care Med. 2000;28(1):93–99. DOI:10.1097/00003246-200001000-00015
  • Zaloga GP. The multifactorial basis for hypocalcemia during sepsis: studies of the parathyroid hormone-Vitamin D axis. Ann Intern Med. 1987;107(1):36.
  • Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLOS Pathog. 2014;10(5):e1004077. DOI:10.1371/journal.ppat.1004077
  • Cappellini F, Brivio R, Casati M, et al. Low levels of total and ionized calcium in blood of COVID-19 patients. Clin Chem Lab Med CCLM. 2020;58(9):e171–173. DOI:10.1515/cclm-2020-0611
  • Zhou Y, Frey TK, Yang JJ. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium. 2009;46(1):1–17.
  • Singh VP, Khatua B, El-Kurdi B, et al. Mechanistic basis and therapeutic relevance of hypocalcemia during severe COVID-19 infection. Endocrine. 2020;70(3):461–462. DOI:10.1007/s12020-020-02530-y
  • Jafari Fesharaki M, Ahmadi N, Karimi Taheri K. Reversible heart failure in a patient with hypocalcemic cardiomyopathy. J Geriatr Cardiol JGC. 2021;18(12):1063–1067.
  • Hurley K, Baggs D. Hypocalcemic cardiac failure in the emergency department. J Emerg Med. 2005;28(2):155–159.
  • Solzbach U, Kitterer H-R, Haas H. Reversible Herzinsuffizienz bei schwerer Hypokalzämie. Herz. 2010;35(7):507–511.
  • Gomaa AA, Hassan HA, Ghaneimah SA. Effect of aspirin and indomethacin on the serum and urinary calcium, magnesium and phosphate. Pharmacol Res. 1990;22(1):59–70.
  • Quilliot D, Bonsack O, Jaussaud R, et al. Dysmagnesemia in Covid-19 cohort patients: prevalence and associated factors. Magnes Res. 2020;33(4):114–122. DOI:10.1684/mrh.2021.0476
  • Alamdari NM, Afaghi S, Rahimi FS, et al. Mortality risk factors among hospitalized COVID-19 patients in a major referral center in Iran. Tohoku J Exp Med. 2020;252(1):73–84. DOI:10.1620/tjem.252.73
  • Jiang P, Lv Q, Lai T, et al. Does hypomagnesemia impact on the outcome of patients admitted to the intensive care unit? a systematic review and meta-analysis. Shock. 2017;47(3):288–295. DOI:10.1097/SHK.0000000000000769
  • Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533–535. DOI:10.1038/s41423-020-0402-2
  • Jung S-Y, Kwon J, Park S, et al. Phosphate is a potential biomarker of disease severity and predicts adverse outcomes in acute kidney injury patients undergoing continuous renal replacement therapy. PLoS ONE. 2018;13(2):e0191290. DOI:10.1371/journal.pone.0191290
  • Duan J, Wang X, Chi J, et al. Correlation between the variables collected at admission and progression to severe cases during hospitalization among patients with COVID‐19 in Chongqing. J Med Virol. 2020;92(11):2616–2622. DOI:10.1002/jmv.26082
  • Yousaf Z, Al-Shokri SD, Al-Soub H, et al. COVID-19-associated SIADH: a clue in the times of pandemic! Am J Physiol Endocrinol Metab. 2020;318(6):E882–885. DOI:10.1152/ajpendo.00178.2020
  • Mondal S, Das TK, Bhattacharya S, et al. Blood gas analysis among COVID-19 patients: a single centre retrospective observational study. J Clin Diagn Res. Epub ahead of print 2021. DOI:10.7860/JCDR/2021/49835.15185.
  • Alfano G, Fontana F, Mori G, et al. Acid base disorders in patients with COVID-19. Int Urol Nephrol. Epub ahead of print 11 June 2021;54(2):405–410. DOI:10.1007/s11255-021-02855-1