199
Views
1
CrossRef citations to date
0
Altmetric
Antimicrobial Original Research Papers

Antibiotic resistance in Campylobacter jejuni and Campylobacter coli: significant contribution of an RND type efflux pump in erythromycin resistance

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 110-118 | Received 15 May 2023, Accepted 04 Oct 2023, Published online: 13 Oct 2023

References

  • Alfredson DA, Korolik V. Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiol Lett. 2007;277(2):123–132. doi: 10.1111/j.1574-6968.2007.00935.x.
  • Newell DG, Mughini-Gras L, Kalupahana RS, et al. Campylobacter epidemiology-sources and routes of transmission for human infection. In Campylobacter: features, detection, and prevention of foodborne disease. London: Academic Press; 2017. p. 85–110. doi: 10.1016/B978-0-12-803623-5.00005-8.
  • Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, et al. Global epidemiology of Campylobacter infection. Clin Microbiol Rev. 2015;28(3):687–720. doi: 10.1128/CMR.00006-15.
  • Riley A, Eshaghi A, Olsha R, et al. Antibiotic susceptibility of clinical isolates of Campylobacter jejuni and Campylobacter coli in Ontario, Canada during 2011–2013. Diagn Microbiol Infect Dis. 2015;83(3):292–294. doi: 10.1016/j.diagmicrobio.2015.07.020.
  • Luangtongkum T, Jeon B, Han J, et al. Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol. 2009;4(2):189–200. doi: 10.2217/17460913.4.2.189.
  • Wysok B, Wojtacka J, Hänninen ML, et al. Antimicrobial resistance and virulence-associated markers in Campylobacter strains from diarrheic and non-diarrheic humans in Poland. Front Microbiol. 2020;11:1799. doi: 10.3389/fmicb.2020.01799.
  • Sproston EL, Wimalarathna HML, Sheppard SK. Trends in fluoroquinolone resistance in Campylobacter. Microb Genom. 2018;4(8):e000198. doi: 10.1099/mgen.0.000198.
  • García-Fernández A, Dionisi AM, Arena S, et al. Human campylobacteriosis in Italy: emergence of multi-drug resistance to ciprofloxacin, tetracycline, and erythromycin. Front Microbiol. 2018;9:1906. doi: 10.3389/fmicb.2018.01906.
  • Wieczorek K, Osek J. Antimicrobial resistance mechanisms among Campylobacter. Biomed Res Int. 2013;2013:340605–340612. doi: 10.1155/2013/340605.
  • Yao H, Shen Z, Wang Y, et al. Emergence of a potent multidrug efflux pump variant that enhances Campylobacter resistance to multiple antibiotics. mBio. 2016;7(5):e01543-16. doi: 10.1128/mBio.01543-16.
  • Quinn T, Bolla JM, Pagès JM, et al. Antibiotic-resistant Campylobacter: could efflux pump inhibitors control infection? J Antimicrob Chemother. 2007;59(6):1230–1236. doi: 10.1093/jac/dkl470.
  • Gibreel A, Taylor DE. Macrolide resistance in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother. 2006;58(2):243–255. doi: 10.1093/jac/dkl210.
  • Zhang A, Song L, Liang H, et al. Molecular subtyping and erythromycin resistance of Campylobacter in China. J Appl Microbiol. 2016;121(1):287–293. doi: 10.1111/jam.13135.
  • Gibreel A, Kos VN, Keelan M, et al. Macrolide resistance in Campylobacter jejuni and Campylobacter coli: molecular mechanism and stability of the resistance phenotype. Antimicrob Agents Chemother. 2005;49(7):2753–2759. doi: 10.1128/AAC.49.7.2753-2759.2005.
  • Lim SK, Moon DC, Chae MH, et al. Macrolide resistance mechanisms and virulence factors in erythromycin-resistant Campylobacter species isolated from chicken and swine feces and carcasses. J Vet Med Sci. 2016;78(12):1791–1795. doi: 10.1292/jvms.16-0307.
  • Mamelli L, Prouzet-Mauléon V, Pagès JM, et al. Molecular basis of macrolide resistance in Campylobacter: role of efflux pumps and target mutations. J Antimicrob Chemother. 2005;56(3):491–497. doi: 10.1093/jac/dki253.
  • Mamelli L, Amoros JP, Pagès JM, et al. A phenylalanine-arginine beta-naphthylamide sensitive multidrug efflux pump involved in intrinsic and acquired resistance of Campylobacter to macrolides. Int J Antimicrob Agents. 2003;22(3):237–241. doi: 10.1016/s0924-8579(03)00199-7.
  • Lin J, Akiba M, Sahin O, et al. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother. 2005;49(3):1067–1075. doi: 10.1128/AAC.49.3.1067-1075.2005.
  • Pérez-Boto D, López-Portolés JA, Simón C, et al. Study of the molecular mechanisms involved in high-level macrolide resistance of spanish Campylobacter jejuni and Campylobacter coli strains. J Antimicrob Chemother. 2010;65(10):2083–2088. doi: 10.1093/jac/dkq268.
  • EN ISO 10272-1:2017. Microbiology of food and animal feeding stuff – horizontal for detection and enumeration of Campylobacter spp. Part 1: detection method. Int Organ Standard (ISO), Geneva, Switzerland. 2017. ''https://www.iso.org/standard/63225.html'' Access date: Oct 2023
  • Ge B, Domesle KJ, Yang Q, et al. Effects of low concentrations of erythromycin, penicillin, and virginiamycin on bacterial resistance development in vitro. Sci Rep. 2017;7(1):11017. doi: 10.1038/s41598-017-09593-4.
  • Olah PA, Doetkott C, Fakhr MK, et al. Prevalence of the Campylobacter multi-drug efflux pump (CmeABC) in Campylobacter spp. ısolated from freshly processed turkeys. Food Microbiol. 2006;23(5):453–460. doi: 10.1016/j.fm.2005.06.004.
  • Duarte A, Santos A, Manageiro V, et al. Human, food and animal Campylobacter spp. isolated in Portugal: high genetic diversity and antibiotic resistance rates. Int J Antimicrob Agents. 2014;44(4):306–313. doi: 10.1016/j.ijantimicag.2014.06.012.
  • Kayman T, Abay S, Hızlısoy H. Identification of Campylobacter spp. isolates with phenotypic methods and multiplex polymerase chain reaction and their antibiotic susceptibilities. Mikrobiyol Bul. 2013;47(2):230–239. doi: 10.5578/mb.4532.
  • Ilktac M, Ongen B, Humphrey TJ, et al. Molecular and phenotypical investigation of ciprofloxacin resistance among Campylobacter jejuni strains of human origin: high prevalence of resistance in Turkey. APMIS. 2020;128(1):41–47. doi: 10.1111/apm.13005.
  • Kayman T, Abay S, Aydin F, et al. Antibiotic resistance of Campylobacter jejuni isolates recovered from humans with diarrhoea in Turkey. J Med Microbiol. 2019;68(2):136–142. doi: 10.1099/jmm.0.000890.
  • Carev M, Kovačić A, Novak A, et al. Campylobacter jejuni strains coresistant to tetracycline and ciprofloxacin in patients with gastroenteritis in Croatia. Infect Dis (Lond). 2017;49(4):268–276. doi: 10.1080/23744235.2016.1258487.
  • Grinnage-Pulley T, Zhang Q. Genetic basis and functional consequences of differential expression of the CmeABC efflux pump in Campylobacter jejuni ısolates. PLoS One. 2015;10(7):e0131534. doi: 10.1371/journal.pone.0131534.
  • Sharifi S, Bakhshi B, Najar-Peerayeh S. Significant contribution of the CmeABC efflux pump in high-level resistance to ciprofloxacin and tetracycline in Campylobacter jejuni and Campylobacter coli clinical isolates. Ann Clin Microbiol Antimicrob. 2021;20(1):36. doi: 10.1186/s12941-021-00439-6.
  • Elhadidy M, Miller WG, Arguello H, et al. Molecular epidemiology and antimicrobial resistance mechanisms of Campylobacter coli from diarrhoeal patients and broiler carcasses in Belgium. Transbound Emerg Dis. 2019;66(1):463–475. doi: 10.1111/tbed.13046.
  • Lin J, Yan M, Sahin O, et al. Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob Agents Chemother. 2007;51(5):1678–1686. doi: 10.1128/AAC.01411-06.
  • Gibreel A, Wetsch NM, Taylor DE. Contribution of the CmeABC efflux pump to macrolide and tetracycline resistance in Campylobacter jejuni. Antimicrob Agents Chemother. 2007;51(9):3212–3216. doi: 10.1128/AAC.01592-06.
  • Nikaido H, Pagès JM. Broad-specificity efflux pumps and their role in multidrug resistance of gram-negative bacteria. FEMS Microbiol Rev. 2012;36(2):340–363. doi: 10.1111/j.1574-6976.2011.00290.x.
  • Hasdemir UO, Chevalier J, Nordmann P, et al. Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol. 2004;42(6):2701–2706. doi: 10.1128/JCM.42.6.2701-2706.2004.
  • Kurinčič M, Botteldoorn N, Herman L, et al. Mechanisms of erythromycin resistance of Campylobacter spp. isolated from food, animals and humans. Int J Food Microbiol. 2007;120(1–2):186–190. doi: 10.1016/j.ijfoodmicro.2007.03.012.
  • Bolinger H, Kathariou S. The current state of macrolide resistance in Campylobacter spp.: trends and ımpacts of resistance mechanisms. Appl Environ Microbiol. 2017;83(12):e00416-e00417 doi: 10.1128/AEM.00416-17.
  • Bai J, Chen Z, Luo K, et al. Highly prevalent multidrug-resistant Campylobacter spp. ısolated from a yellow-feathered broiler slaughterhouse in South China. Front Microbiol. 2021;12:682741. doi: 10.3389/fmicb.2021.682741.
  • Cheng Y, Zhang W, Lu Q, et al. Point deletion or ınsertion in CmeR-Box, A2075G substitution in 23S rRNA, and presence of erm(B) are key factors of erythromycin resistance in Campylobacter jejuni and Campylobacter coli ısolated from Central China. Front Microbiol. 2020;11:203. doi: 10.3389/fmicb.2020.00203.
  • Lehtopolku M, Kotilainen P, Haanperä-Heikkinen M, et al. Ribosomal mutations as the main cause of macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother. 2011;55(12):5939–5941. doi: 10.1128/AAC.00314-11.
  • Caldwell DB, Wang Y, Lin J. Development, stability, and molecular mechanisms of macrolide resistance in Campylobacter jejuni. Antimicrob Agents Chemother. 2008;52(11):3947–3954. doi: 10.1128/AAC.00450-08.
  • Cagliero C, Mouline C, Cloeckaert A, et al. Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother. 2006;50(11):3893–3896. doi: 10.1128/AAC.00616-06.
  • Qin S, Wang Y, Zhang Q, et al. Report of ribosomal RNA methylase gene erm(B) in multidrug-resistant Campylobacter coli. J Antimicrob Chemother. 2014;69(4):964–968. doi: 10.1093/jac/dkt492.
  • Eryıldız C, Sakru N, Kuyucuklu G. Investigation of antimicrobial susceptibilities and resistance genes of Campylobacter ısolates from patients in edirne, Turkey. Iran J Public Health. 2022;51(3):569–577. doi: 10.18502/ijph.v51i3.8933.
  • Demiroğlu EG, Şahin M, Büyük F. Isolation and characterization of thermophilic Campylobacter species from geese raised in kars region (Turkey) using cultural, molecular and mass spectrometry methods. Iran J Vet Res. 2022;23(1):24–31. doi: 10.22099/ijvr.2021.41103.5962.
  • Lin J, Michel LO, Zhang Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother. 2002;46(7):2124–2131. doi: 10.1128/AAC.46.7.2124-2131.2002.
  • Su CC, Yin L, Kumar N, et al. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nat Commun. 2017;8(1):171. doi: 10.1038/s41467-017-00217-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.